
DSP System Toolbox™ Release Notes

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

DSP System Toolbox™ Release Notes
© COPYRIGHT 2012–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2021a

Multicore Tab for Dataflow: Analyze and configure multicore execution
for Simulink models using Dataflow . 1-2

Rationally oversampled channelizers . 1-2

In-Place Memory Optimization: Optimize the memory usage in the
generated code for certain DSP System Toolbox features 1-2

Fractional delay FIR filter design . 1-3

Power Meter: Measure power of voltage signal in MATLAB and Simulink
. 1-3

SIMD Code Generation: Use Intel AVX2 to generate optimized code for
certain DSP System Toolbox features . 1-3

Improved filter response visualization for certain DSP System Toolbox
blocks . 1-8

Improved Speed Performance in Accelerator Mode for specific blocks in
DSP System Toolbox . 1-8

Improved display for Array Plot block . 1-8

Variable-sized input support for timescope object 1-10

One-Based index support for Peak Finder block . 1-10

Removal of the oversampling ratio functionality 1-10

Digital down-converter (DDC) and digital up-converter (DUC) examples
for FPGA (requires HDL Coder license for code generation) 1-10

Objects being removed . 1-11
Certain System objects will be removed . 1-11
Certain System objects have been removed . 1-12
dsp.TimeScope will be removed . 1-13

Blocks being removed . 1-13
Certain blocks will be removed . 1-13
Blocks that have been removed . 1-13

iii

Contents

R2020b

New time scope object: Visualize signals in the time domain 2-2
Scopes Tab . 2-2
Measurements Tab . 2-2

SIMD Code Generation: Use Intel AVX2 to generate optimized code for
certain DSP System Toolbox features . 2-3

One-sided short-time Fourier transform in dsp.STFT and dsp.ISTFT
objects . 2-4

In-place Memory Optimization: Optimize the memory usage in the
generated code for certain DSP System Toolbox blocks 2-5

Improved Speed Performance in Accelerator Mode for specific blocks in
DSP System Toolbox . 2-7

Visualize logged Stateflow states in the Logic Analyzer 2-7

HDL-optimized FIR Decimation block and System object: Downsample
signals using a FIR decimation filter with a hardware-friendly interface
and architecture (requires HDL Coder for code generation) 2-7

Gigasample-per-second (GSPS) CIC Decimation and CORDIC Algorithm:
Increase throughput of HDL-optimized CIC decimation and complex-to-
magnitude-angle conversion by using frame-based input (requires HDL
Coder for code generation) . 2-7

Dataflow domain analysis integrated with Performance Advisor 2-8

MATLAB Compiler support for dsp.ArrayPlot . 2-8

Functionality being removed or changed . 2-8
dsp.TimeScope will be removed . 2-8
Spectrum Analyzer block defaults changed . 2-8
HDL Minimum Resource FFT and HDL Streaming FFT blocks have been

removed . 2-9
Matrix Viewer and Waterfall blocks will be removed 2-9

R2020a

SIMD Code Generation: Use Intel AVX2 to generate optimized code for
certain DSP System Toolbox blocks . 3-2

FIR Interpolation and FIR Decimation blocks . 3-2
LMS Filter block . 3-2

Automatically leverage SIMD for multicore dataflow simulations 3-2

iv Contents

New Biquadratic SOS Filter Object . 3-2

Multirate processing in FIR Rate Conversion block 3-2

Non-Maximally Decimated Channelizers . 3-3

Complex Support for Channelizer and Channel Synthesizer Prototype
Coefficients . 3-3

Enhancements to designMultirateFIR function . 3-3

UDP Sender supports large message sizes . 3-3

Variable CIC Decimation Factor: Specify decimation factor as an input to
the CIC Decimation HDL Optimized block (requires HDL Coder for
code generation) . 3-3

Gigasample-per-second (GSPS) NCO: Generate frame-based output from
HDL-optimized NCO for high speed applications (requires HDL Coder
for code generation) . 3-4

Suggestions for optimal model settings in Dataflow Simulation Assistant
. 3-4

Dataflow subsystems supported in model reference simulation targets
. 3-4

Functionality being removed or changed . 3-4
Removal of DirectFeedthrough property in dsp.VariableIntegerDelay System

object . 3-4
dsp.AudioPlayer and dsp.AudioRecorder objects removed 3-4
HDL-optimized NCO requires valid input port . 3-5
HDL-optimized NCO with floating-point inputs applies phase quantization

. 3-5
NCO HDL Optimized block now ignores LUTRegisterResetType parameter

. 3-6
Signal data no longer streams to the Logic Analyzer when signal logging is

disabled . 3-6

R2019b

SIMD code from Discrete FIR Filter Block: Generate optimized code
using Intel AVX2 for FIR Filters in Simulink . 4-2

HDL-optimized CIC Decimation block and System object: Downsample
signals using a cascade integrator-comb (CIC) filter (requires HDL
Coder for code generation) . 4-3

Discrete FIR Filter HDL Optimized block: Filter using complex coefficient
values (requires HDL Coder for code generation) 4-2

v

Improved display for dsp.DynamicFilterVisualizer 4-2

Improved display for dsp.ArrayPlot . 4-3

dsp.MatrixViewer support for multiple cursor measurements 4-4

Playback control behavior changed for scopes in referenced models . . . 4-5

Output of colored noise generator can be bounded 4-5

Blocks with finite states supported for unfolding in Dataflow subsystems
. 4-5

Simulate Dataflow subsystems using multiple threads in Rapid
Accelerator mode . 4-5

Virtual bus support at Dataflow subsystem boundaries for heterogeneous
signals . 4-5

Functionality being removed or changed . 4-6
Certain System objects will be removed . 4-6

R2019a

Direct and Inverse Short-Time Fourier Transform: Analyze and process
streaming signals in the frequency domain and synthesize them with
perfect reconstruction using overlap and add . 5-2

Fourth-Order Section Filter: Model and simulate cascaded fourth-order
section IIR filters in MATLAB . 5-2

Spectrum Analyzer improvements for exponential averaging, mixed-
complexity inputs, and MATLAB script generation 5-2

Smooth data with exponential averaging . 5-2
Display block inputs with different complexity . 5-2
Generate MATLAB script from dsp.SpectrumAnalyzer 5-2

Exponential Spectrum Averaging: Smooth spectrum estimation and
analysis efficiently over time using exponential averaging 5-3

Complex Data over UDP: Send and receive complex data directly over
UDP in MATLAB and Simulink . 5-3

Stream signals only from a defined interval within audio files when using
the From Multimedia File block . 5-4

New targets supported for multicore code generation from a dataflow
subsystem . 5-4

Blocks with constant sample times supported in dataflow subsystems . . 5-4

vi Contents

Improve simulation performance of dataflow subsystems using the
Dataflow Simulation Assistant . 5-4

Identify scopes unsupported for multithreading in dataflow subsystems at
edit-time . 5-5

Use the Timing Legend to highlight blocks in a dataflow domain 5-6

Discrete FIR Filter HDL Optimized block: Use programmable coefficients
with a fully parallel systolic architecture (requires HDL Coder for code
generation) . 5-7

Discrete FIR Filter HDL Optimized block: Optimize symmetric and
antisymmetric coefficients and optional reset port for a partly serial
systolic architecture (requires HDL Coder for code generation) 5-7

HDL code generation support for programmable coefficients with frame-
based Discrete FIR Filter block (requires HDL Coder for code
generation) . 5-7

dsp.MatrixViewer System object . 5-7

DSP System Toolbox Support Packages for ARM Cortex -A and ARM
Cortex -M Processors will be removed . 5-8

Functionality being removed or changed . 5-8
Certain System objects will be removed . 5-8
Parametric EQ Filter block has been removed . 5-8
Changes to Discrete FIR Filter HDL Optimized serial filter parameters . . . 5-9

R2018b

Dataflow: Accelerate your model using multi-threading and derive frame
sizes automatically for multirate signal processing in Simulink 6-2

Programmatic Interface for Spectrum Analyzer Measurements: Configure
measurements programmatically and obtain numerical results for
further processing or analysis . 6-2

Dynamic Filter Visualization: Visualize the magnitude response of time-
varying digital filters . 6-2

Optimized Multistage Multirate Filters: Design multistage decimation
and interpolation FIR filters based on requirements for response and
implementation cost . 6-3

Sample Range for Audio File Reader: Stream signals only from a defined
interval within audio files when using the dsp.AudioFileReader System
object . 6-3

vii

Faster Channelizer and Channel Synthesizer: Simulate polyphase FFT
filters faster by leveraging additional parallel optimizations 6-3

Peek Functionality in dsp.AsyncBuffer System object 6-3

dsp.AudioFileReader System object supports http streams 6-4

Improved Logic Analyzer performance for multichannel signals 6-4

HDL code generation support for complex input signals or complex
coefficients of frame-based Discrete FIR Filter and FIR Decimation
blocks (requires HDL Coder for code generation) 6-4

Discrete FIR Filter HDL Optimized: Select transposed architecture,
optimize symmetric and antisymmetric coefficients, and enable reset
port (requires HDL Coder for code generation) 6-4

Functionality being removed or changed . 6-5
Vector Scope block has been removed . 6-5
Certain linear prediction System objects will be removed 6-5
Cell array support removed for dsp.AllpassFilter coefficients 6-6

R2018a

Frequency Input Mode for Spectrum Analyzer: Display, measure, and
analyze frequency-domain signals in MATLAB and Simulink 7-2

Efficiency-Optimized Digital Filters: Simulate select digital filters faster
in MATLAB and Simulink by leveraging additional parallel
optimizations . 7-2

Complex Bandpass Decimation: Extract a frequency subband using a one-
sided (complex) bandpass decimator in MATLAB and Simulink 7-2

Frequency-Domain Adaptive Filter Block: Simulate adaptive FIR filters
requiring a large number of taps . 7-2

Bit-Natural HDL-Optimized FFT: Return data in bit-natural order from
frame-based FFT/IFFT (Requires an HDL Coder license for code
generation) . 7-2

New partitioned modes in dsp.FrequencyDomainAdaptiveFilter System
object . 7-3

Obtain section and output word lengths and fraction lengths for
dsp.CICDecimator and dsp.CICInterpolator System objects 7-3

Updated info method for dsp.CICDecimator and dsp.CICInterpolator
System objects . 7-3

viii Contents

Specify coefficients directly in FIR halfband interpolator and decimator
. 7-3

Frequency-Domain FIR Filter: Specify numerator in frequency domain
. 7-3

Frequency-Domain FIR Filter: Specify coefficients from input port in
Simulink . 7-4

Tunable Parameters Through Input Ports: Set values of tunable
parameters using input signals for 14 additional Simulink blocks 7-4

Logic Analyzer enhancements . 7-4

Additional pipelining of HDL-optimized Complex to Magnitude-Angle . . 7-4

HDL Channelizer returns data in bit-natural order for both output sizes
. 7-5

Variable-size signal support for dsp.VariableIntegerDelay System object
. 7-5

Code generation support for getRateChangeFactors function 7-5

Binary File Reader: Binary file no longer required to exist before code
generation . 7-5

Log data from Time Scope block as timetable . 7-5

Discrete FIR Filter block supports custom state attributes for better
customization and efficiency of generated code 7-5

Functionality Being Removed . 7-6
Removal of Vector Scope block . 7-6
Removal of DirectFeedthrough property in dsp.VariableFractionalDelay

System object . 7-6
Removal of DirectFeedthrough property in dsp.VariableIntegerDelay System

object . 7-6
Constraints on the dimensions of InitialConditions in

dsp.VariableIntegerDelay System object . 7-6
Functionality Removed from dsp.DigitalUpConverter and

dsp.DigitalDownConverter System objects . 7-7
Functionality Removed from dsp.Delay System object 7-7
Removal of 'linphase' option in firlpnorm . 7-8

R2017b

Improved Spectrum Analyzer: Analyze signals in the frequency domain
using polyphase FFT filter banks, custom windows, dBFS units, and a
spectral mask panel . 8-2

ix

Zoom FFT: Compute fast Fourier transform (FFT) of a frequency subband
at high resolution . 8-2

Frequency-Domain FIR Filter: Convolve long sequences while balancing
latency and execution efficiency . 8-2

Multitap Fractional Delay: Delay signals by multiple sample period values
concurrently using variable fractional delay . 8-3

Minimum Resource FFT/IFFT: Reduce resource usage with the Burst
Radix 2 architecture of the HDL Optimized FFT (requires HDL Coder
for code generation) . 8-3

Logic Analyzer Improvements: Triggers and bus signal names 8-3

Enhancements to the dsp.Channelizer System object 8-3

Automatic Port Creation: Add inports to scope blocks when routing
signals . 8-3

Improvements to interactive legend in scope blocks 8-4

Array Plot Improvements: Support for scalar and variable-size inputs, axis
scaling at the command line . 8-4

dsp.BlockLMSFilter System object supports code generation 8-4

Functionality being removed . 8-4
Removal of Overlap-Add FFT Filter block and Overlap-Save FFT Filter block

. 8-4
Removal of sample-based processing mode from the DSP System Toolbox

System objects . 8-4
Removal of adaptfilt objects . 8-5
Removal of qfft and qformat functions . 8-6
Removal of HDL Minimum Resource FFT block . 8-7
Removal of Streaming Radix 2 architecture in HDL-optimized FFT blocks

and System objects . 8-7

R2017a

Improved Spectrum Analyzer: Analyze signals in the frequency domain
using additional units, dual visualization, and mask compliance output
. 9-2

Unified interface for dsp.LogicAnalyzer: Visualize, measure, and analyze
signal transitions in MATLAB using the same interface as the Simulink
Logic Analyzer . 9-2

Channelizer and Channel Synthesizer Blocks: Analyze and synthesize
narrow subbands of a broadband signal using a polyphase FFT filter
bank in Simulink . 9-3

x Contents

Asynchronous Buffering: Exchange signals at different rates and array
sizes with the dsp.AsyncBuffer System object . 9-3

HDL Optimized Filters: Model and generate optimized hardware
implementations for FIR filters and polyphase filter banks (requires
HDL Coder for code generation) . 9-3

Discrete FIR Filter . 9-3
Polyphase Filter Bank . 9-3
Frame Input Support for FIR Decimation . 9-3

Remove outliers from streaming signals in MATLAB and Simulink using
Hampel filter . 9-4

Spectral estimation using filter bank in Simulink 9-4

Tunable UDP port number in generated code . 9-4

Filter signals using the dsp.FilterCascade System object 9-4

Use delay and scalar gain in dsp.FilterCascade System object 9-4

Cascade a dsp.FilterCascade System object . 9-5

Access the complete history of LMS filter weights in MATLAB 9-5

Tab Completion: Complete parameter names and options in DSP System
Toolbox System objects . 9-5

Filter Builder and fdesign support IIR halfband filter System objects . . . 9-5

Specify image file icons for MATLAB System block 9-6

Change tunable System object properties before locking 9-6

Support for Time Scope to For Each subsystems . 9-6

Copy scope to clipboard . 9-6

Interactive legend for scopes . 9-6

Stem plot option for Time Scope block . 9-7

Time Scope Block: Connect nonvirtual bus and array of buses signals . . 9-7

Frame-based processing changes . 9-7
Input processing parameter set to Inherited . 9-7
InputProcessing property set to Inherited errors . 9-8
Rate options parameter set to Inherit from input 9-8
Find the histogram over parameter set to Inherited 9-9
Running difference parameter set to Inherit from input 9-9
Save 2-D signals as parameter set to Inherit from input 9-9
Treat Mx1 and unoriented sample-based signals as parameter removed

. 9-9
Sample-based processing parameter removed . 9-9

xi

Functionality being removed . 9-10
Running Mode in Statistics Objects and Blocks . 9-10
Audio device recorder and player objects . 9-10
Radix 2 architecture of HDL-optimized FFT blocks and System objects . . 9-11

R2016b

Logic Analyzer: Visualize, measure, and analyze transitions and states
over time for Simulink signals . 10-2

Spectral Mask: Compare a signal spectrum to a spectral mask using
Spectrum Analyzer . 10-2

Channelizer and Channel Synthesizer: Analyze and synthesize narrow
subbands of a broadband signal using a polyphase FFT filter bank
. 10-2

Moving Statistics: Measure descriptive statistics on streaming signals in
MATLAB and Simulink . 10-2

Gigasample per Second (GSPS) Signal Processing: Increase the
throughput of HDL code generated from Discrete FIR Filter and
Integer Delay blocks using frame input . 10-2

Stream signals to and from binary files . 10-3

Compute LMS adaptive filter weights using LMS Update block 10-3

Allpass Filter block . 10-3

Specify coefficients in Farrow Rate Converter block and System object
. 10-3

Spectral estimation using filter banks . 10-3

High-throughput polyphase filter bank for HDL example 10-3

Bit-reversed input order for HDL-optimized FFT 10-3

HDL code generation for reset port on Discrete FIR Filter 10-4

Compiler support for System object scopes . 10-4

Custom X-axis data in Array Plot . 10-4

Set legend strings and autoscaling programmatically in Time Scope . . 10-4

Simpler way to call System objects . 10-4

xii Contents

System objects support for additional inputs, global variables, and
enumeration data types . 10-5

Functionality being removed . 10-5
Removal of sample mode from the DSP System Toolbox System objects

. 10-5
Digital Filter block and System object . 10-6
Removal of adaptfilt objects . 10-6
Cell array support removal for dsp.AllpassFilter coefficients 10-7
Inherited option removed from the input processing parameter 10-7
Frame status parameter removed from the Check Signal Attributes block

. 10-7
qfft object errors . 10-8
dspstartup removed . 10-8

R2016a

DSP Unfolding for Mac: Generate multithreaded MEX files from MATLAB
functions on Mac OS X . 11-2

Faster FIR and Biquad Filters: Run faster simulations for system models
that include FIR and biquad filters . 11-2

Fixed-Point Farrow Rate Converter: Design and simulate Farrow rate
conversion filters using fixed-point data types 11-2

Gigasample per Second (GSPS) Signal Processing: Increase throughput
of HDL-optimized FFT and IFFT algorithms using frame input 11-2

HDL Optimizations for Biquad Filter: Reduce critical path or area when
generating HDL from a subsystem that includes a Biquad Filter block
. 11-3

Differentiate a signal using the dsp.Differentiator System object and
Differentiator block . 11-3

Play audio data using the audioDeviceWriter System object and Audio
Device Writer block . 11-3

Specify coefficients in IIR Halfband Interpolator and IIR Halfband
Decimator Blocks and System objects . 11-3

Customize the data limits of the Matrix Viewer block 11-4

Code generation for wave digital filter structure in dsp.AllpassFilter
System object . 11-4

Generate coefficients for multirate filters . 11-4

Select the color of the noise in dsp.ColoredNoise System object 11-4

xiii

Full-precision setting for product data type of Biquad Filter 11-4

Code generation for Subband Analysis and Subband Synthesis Filters
. 11-5

Enhancements to Variable Fractional Delay . 11-5

Multiple inputs for Spectrum Analyzer . 11-5

Additional axes for Time Scope . 11-5

Set legend programmatically in Array Plot . 11-5

System object property display . 11-5

System object enhancements to MATLAB System block 11-6

Enhanced System Object Development with MATLAB Editor 11-6

Functionality being removed . 11-7

R2015b

DSP Unfolding: Generate a multi-threaded MEX File from a MATLAB
function . 12-2

HDL Optimizations for Discrete FIR Filter: Implement FIR filters in
hardware at higher frequencies or using fewer resources 12-2

Array Plot Block: Visualize array and vector data 12-2

Additional Multirate Filters: Design Halfband, CIC compensation, and
HDL-optimized FIR rate conversion filters . 12-2

Conversion Filter Blocks: Convert the rate of signals in Simulink models
. 12-3

Implement FIR and IIR filters in Simulink, using the Lowpass Filter and
Highpass Filter blocks . 12-3

Estimate power spectrum and power spectral density using the Spectrum
Estimator block . 12-3

Automatic selection of filter coefficients for FIR Interpolation, FIR
Decimation, and FIR Rate Conversion blocks . 12-3

Visualize the frequency response of the underlying filters in the DSP
System Toolbox blocks . 12-3

xiv Contents

Specify the window length and window overlap in Cross-Spectrum
Estimator and Discrete Transfer Function Estimator blocks 12-4

Select the color of the noise in Colored Noise block 12-4

New functionality added to the dsp.SpectrumEstimator System object
. 12-4

Generate C code from dsp.AllpassFilter and import the System object into
Simulink using the MATLAB System block . 12-5

dsp.CICDecimator and dsp.CICInterpolator System objects support single
and double data types . 12-5

Frame-based signal logging in structure formats in Time Scope block
. 12-5

Scientific notation in Time Scope . 12-5

Performance improvements for FFT, IFFT and notch peak filters 12-5

Floating-point support and optional valid port for HDL-optimized NCO
. 12-6

HDL Code Generation from filterbuilder . 12-6

Simulink templates for ARM Cortex-A and ARM Cortex-M processors
. 12-6

ROI processing removed . 12-7

Frame-based processing changes . 12-7
Inherited Option Removed from the Input Processing Parameter 12-7
Sample-Based Row Vector Processing Changes . 12-8
Blocks Emit Sample-Based Signals Only . 12-9

Features removed, replaced and renamed . 12-10
Blocks removed and replaced . 12-10
Removal of adaptfilt objects . 12-10
Removal of mfilt objects . 12-11
System Object Propagation Mixin Methods Renamed 12-11

R2015a

Audio Latency Reduction: Significantly reduce latency for audio hardware
I/O in MATLAB and Simulink . 13-2

Filter Design Enhancements: Design high-order IIR parametric EQ filter,
variable bandwidth FIR and IIR filters, Digital Down-Converter and
Digital Up-Converter blocks . 13-2

xv

DSP Simulink Model Templates: Configure the Simulink environment for
digital signal processing models . 13-3

Streaming Scope Improvements: Plot in stem mode, access log x-axis
scaling, customize sample rate, and use infinite data support 13-3

Library for HDL Supported DSP Blocks: Find all blocks that support HDL
. 13-3

C Code Generation of DSP Algorithms for ARM Cortex-A and Cortex-M
processors: Generate optimized and faster performing C code using
Embedded Coder . 13-3

Performance Improvements . 13-4

Updated Time Scope block toolbar and menus . 13-4

Specify block filter characteristics through System objects 13-4

Discrete Transfer Function Estimator block . 13-5

Specify filter coefficients as an input to the FIR Decimation block 13-5

Enhanced code generation for CIC Decimation and CIC Interpolation
filter blocks . 13-5

HDL support for ‘inherit via internal rule’ data type setting on FIR
Decimation and Interpolation blocks . 13-5

Improvements for creating System objects . 13-5

Min/Max logging instrumentation for float-to-fixed-point conversion of
DSP System objects . 13-6

Provide variable-size input to the Delay System object 13-6

Estimate output coherence of Transfer Function Estimator System object
. 13-6

Specify filter coefficients as an input to the FIR Decimator System object
. 13-6

Bit growth to avoid overflow in HDL-optimized FFT and IFFT 13-7

Fixed-point support for FIR Half-band Interpolator and FIR Half-band
Decimator System objects . 13-7

Updated cost method for filter System objects . 13-7

Frame-based processing . 13-7
Input processing parameter set to Inherited . 13-8
Rate options parameter set to Inherit from input 13-20
Treat Mx1 and unoriented sample-based signals as parameter set to M

channels . 13-20

xvi Contents

Save 2-D signals as parameter set to Inherit from input 13-20
Find the histogram over parameter set to Inherited 13-21
Sample-based processing parameter set to Pass through 13-21
Running difference parameter set to Inherit from input 13-22

Features removed, replaced, and duplicated . 13-22
Blocks replaced, removed, and available in additional libraries 13-22
Removal of adaptfilt objects . 13-23

Functionality changed or being removed for blocks and System objects
. 13-24

Removal of sample mode from the DSP System Toolbox System objects
. 13-24

Option to specify filter coefficients from Digital Up Converter and Digital
Down Converter System objects being removed 13-25

Removal of OutputDataType and OverflowAction properties for CIC
Compensation Interpolator and Decimator System objects 13-26

R2014b

Optimized C code generation for ARM Cortex-A Ne10 library from
MATLAB and Simulink with DSP System Toolbox Support Package for
ARM Cortex-A Processors . 14-2

System objects for DSP System Toolbox Support Package for ARM Cortex-
M Processors . 14-3

Fixed-point support for Biquad Filter on DSP System Toolbox Support
Package for ARM Cortex-M Processors . 14-3

Multirate filters: Sample and Farrow Rate Converter, CIC Compensation
Interpolator/Decimator, and FIR Halfband Interpolator/Decimator
System objects . 14-3

Tunable coefficients and variable-size input available on FIR Interpolator
System object and block . 14-3

Variable-size input available on FIR Decimator System object and block
. 14-4

Min/Max logging instrumentation for float-to-fixed-point conversion of
commonly used DSP System objects, including Biquad Filter, FIR Filter,
and FIR Rate Converter . 14-4

HDL-optimized FFT and IFFT System objects and HDL-optimized Complex
to Magnitude-Angle System object and block . 14-4

Real input, bit-reversed output, reset input available on HDL-optimized
FFT and IFFT . 14-4

xvii

Option to synthesize lookup table to ROM available on HDL-optimized
FFT and IFFT blocks . 14-5

Reduced latency of HDL-optimized FFT and IFFT 14-5

CIC algorithm and HDL code generation for DC Blocker 14-5

dsp.FilterCascade System object . 14-5

Phase Extractor block and dsp.PhaseExtractor System object 14-5

Overrun and underrun reporting on audio device blocks and System
objects . 14-5

Unsigned input data type in dsp.CICDecimator and dsp.CICInterpolator
System Objects . 14-6

Logic Analyzer support for vector, enumerated, and complex inputs . . . 14-6

System object support in Simulink For Each Subsystem 14-6

Getting Started Tutorials . 14-6

Functionality being removed or replaced for blocks and System objects
. 14-6

Persistence mode in Vector Scope . 14-12

Code generation for additional DSP System Toolbox System objects . . 14-12

Tunable amplitude on dsp.SineWave . 14-13

R2014a

Up to four-times faster FIR filter simulation in MATLAB System object
and Simulink block . 15-2

Optimized C code generation for ARM Cortex–M processors from System
objects with MATLAB Coder and Embedded Coder 15-2

Notch/peak filter and parametric equalizer filter System objects in
MATLAB . 15-2

Variable bandwidth FIR and IIR filter System objects in MATLAB 15-2

Pink/Colored noise generation System object in MATLAB 15-3

HDL optimized FFT and IFFT Simulink blocks . 15-3

xviii Contents

Fixed-point data type support for FIR filter, in ARM Cortex-M support
package . 15-3

Choice of wrapping or truncating input of FFT, IFFT, and Magnitude FFT
in MATLAB and Simulink . 15-3

Variable-size input for biquad and LMS filters in MATLAB and Simulink
. 15-3

More flexible control of dsp.LMSFilter System object fixed-point settings
. 15-3

DC blocker System object and Simulink block . 15-4

dsp.DigitalDownConverter and dsp.DigitalUpConverter now support C
code generation . 15-4

The isDone method of dsp.AudioFileReader honors PlayCount 15-4

M4A replaced by MPEG4 in dsp.AudioFileWriter 15-4

Spectrogram cursors and CCDF plots in the spectrum analyzer 15-4

Changed dsp.SpectrumAnalyzer property names 15-4

Conversion to/from allpass from/to wave digital filter 15-5

Transfer function estimation in Simulink . 15-5

Updates to the Time Scope . 15-5

Changed dsp.TimeScope property names . 15-5

Time Scope automatically switches to block-based sample time 15-5

dsp.LogicAnalyzer channel selection . 15-6

System object templates . 15-6

System objects infer number of inputs and outputs from stepImpl method
. 15-6

System objects setupImpl method enhancement 15-6

System objects infoImpl method allows variable inputs 15-6

System objects base class renamed to matlab.System 15-6

System objects Propagates mixin methods . 15-6

Code generation support for additional functions 15-7

xix

R2013b

Support Package for ARM Cortex-M Processors . 16-2

Channel and distortion measurement, cursors, and spectrogram
visualization using Spectrum Analyzer in MATLAB and Simulink . . . 16-2

Channel mapping for multichannel audio devices in MATLAB and
Simulink . 16-2

Variable-size support for FIR and Allpole filters in MATLAB and Simulink
. 16-3

Estimation of Power Spectrum, Cross Power Spectrum, and Transfer
Function for streaming data in MATLAB . 16-3

Data logging and archiving using Time Scope in Simulink 16-3

MIDI control interface support in MATLAB . 16-3

Integer support on the output port of the MIDI Controls block 16-3

Kalman filter . 16-4

Adaptive filters using Lattice, Fast Transversal, Filtered-X LMS, and
Frequency Domain algorithms in MATLAB . 16-4

Coupled allpass filter . 16-4

Functionality being removed or changed . 16-4
Migrate away from fdesign.pulseshaping . 16-5

Configuration dialog added to Logic Analyzer . 16-5

Complex trigger support in Time Scope . 16-5

Default color changes for Array Plot, Time Scope, and Spectrum Analyzer
. 16-5

MATLAB System Block to include System objects in Simulink models
. 16-6

Restrictions on modifying properties in System object Impl methods
. 16-6

System objects matlab.system.System warnings 16-7

Removing HDL Support for NCO Block . 16-7

xx Contents

R2013a

Allpass Filter System object . 17-2

Adaptive filter System objects using RLS and Affine Projection Filter
. 17-2

Logic Analyzer System object . 17-2

Audio System object support for tunability, variable frame size, variable
number of channels, and writing MPEG-4 AAC 17-2

Array Plot System object for displaying vectors or arrays in 2-D and
Spectrum Analyzer block with enhanced controls and features such as
peak finder . 17-3

Time Scope block with triggering and peak finder features 17-7
Triggers Panel . 17-8
Peak Finder Features . 17-8
Panning Capability . 17-8
Programmatic Access . 17-8
Scale Axes Limits After 10 Updates . 17-8

Change of the default for audio hardware API on Linux 17-9

Change of the default for audio file formats in multimedia blocks and
audio file reader and writer System objects . 17-9

Change of property default in the audio file reader System object 17-9

Removal of the signalblks package . 17-9

Scope Snapshot display of additional scopes in Simulink Report
Generator . 17-9

Unoriented vector treated as column vector in the Biquad Filter 17-9

NCO HDL Optimized block . 17-10

HDLNCO System object . 17-10

HDL code generation for NCO HDL Optimized block and System object
. 17-10

Support for nonpersistent System objects . 17-10

New method for action when System object input size changes 17-10

Scaled double data type support for System objects 17-10

xxi

R2012b

SpectrumAnalyzer System object . 18-2

Cross-platform support for reading and writing WAV, FLAC, OGG, MP3
(read only), MP4 (read only), and M4a (read only) 18-2

Support for code generation for CICDecimator and CICInterpolator
System objects . 18-3

Support for HDL code generation for multichannel Discrete FIR Filter
block . 18-3

Time Scope enhancements, including new cursors, embedded simulation
controls, and External and Rapid Accelerator modes 18-3

Cursor measurements panel . 18-4
Additional embedded simulation controls . 18-4
Support for external mode and rapid accelerator mode 18-4
Properties dialog box . 18-5
Axes Maximization . 18-5
Automatic calculation of Time Span . 18-5
ReduceUpdates property . 18-6
Support for conditional subsystems . 18-6

Source and sink blocks being replaced . 18-6

Discrete IIRFilter and AllpoleFilter System objects 18-7

Support for MATLAB Compiler for CICDecimator and CICInterpolator
System objects . 18-7

Code generation support for SignalSource System object 18-7

Behavior change of locked System objects for loading, saving, and
cloning . 18-7

Behavior change of statistics blocks for variable-size inputs 18-8

Simulation state save and restore for additional blocks 18-8

For Each subsystem support for additional blocks 18-9

Multi-instance model referencing support for additional blocks 18-9

Expanded analysis support for filter System objects 18-9

Removal of the signalblks package . 18-9

Discrete filter block visible in DSP library . 18-10

System object tunable parameter support in code generation 18-10

xxii Contents

save and load methods for System objects . 18-10

Save and restore SimState not supported for System objects 18-10

Map integer delay to RAM on Delay block . 18-10

HDL support for System objects . 18-10

HDL resource sharing for Biquad Filter block . 18-10

R2012a

Frame-Based Processing . 19-2
Inherited Option of the Input Processing Parameter Now Warns 19-2
Logging Frame-Based Signals in Simulink . 19-3
Model Reference and Using slupdate . 19-3
Removing Mixed Frameness Support for Bus Signals on Unit Delay and

Delay . 19-4
Audio Output Sampling Mode Added to the From Multimedia File Block

. 19-4

System Object Enhancements . 19-4
Code Generation for System Objects . 19-4
New MAT-File Reader and Writer System Objects 19-4
New System Object Option on File Menu . 19-4
Variable-Size Input Support for System Objects 19-4
Data Type Support for System Objects . 19-5
New Property Attribute to Define States . 19-5
New Methods to Validate Properties and Get States from System Objects

. 19-5
matlab.system.System changed to matlab.System 19-5

Time Scope Enhancements . 19-5
Time Domain Measurements in Time Scope . 19-5
Multiple Display Support in Time Scope . 19-6
Style Dialog Box in Time Scope . 19-6
Sampled Data as Stairs in Time Scope . 19-6
Complex Data Support in Time Scope . 19-7
Additional Time Scope Enhancements . 19-7

ASIO Support in To/From Audio Device Blocks and Objects 19-7

Video Processing Enabled for the DSP System Toolbox Multimedia File
Blocks . 19-8

System Objects Integrated into Filter Design Workflow 19-8
Integration of System Objects into Filter Design via fdesign, FDATool, and

Filterbuilder . 19-8
Convert dfilt and mfilt Filter Objects to System Objects 19-8
Filter Analysis and Conversion Methods for System Object Filters 19-8

xxiii

New Measurement Workflow . 19-9
Measurements for Bilevel Pulse Waveforms . 19-9
System Objects for Peak-to-RMS and Peak-to-Peak Measurements 19-9

Discrete FIR Filter System Object . 19-9

Inverse Dirichlet Sinc-Shaped Passband Design Added to Constrained FIR
Equiripple Filter . 19-9

Code Generation Support Added to FIR Decimator System Object 19-10

Filter Block Enhancements . 19-10
IC/Coefficient Parameter Ports in the Simulink Discrete Filter and Discrete

Transfer Function . 19-10
Reset Port for Resetting Filter State in Filter Blocks 19-10

Discrete FIR Filter Block Coefficient Port Changes 19-10

Statistics Blocks and Objects Warning for Region of Interest Processing
. 19-10

New and Updated Demos . 19-10

R2011b

Frame-Based Processing . 20-2
General Product-Wide Changes . 20-2
Logging Signals in Simulink . 20-3
Triggered to Workspace . 20-3
Digital Filter Design Block . 20-4
Filterbuilder, FDATool and the Filter Realization Wizard Block 20-5
Changes to Row Vector Processing for dsp.Convolver, dsp.CrossCorrelator,

and dsp.Interpolator System Objects . 20-5

Custom System Objects . 20-5

New Allpole Filter Block . 20-5

New Audio Weighting Filter Functionality . 20-5

Time Scope Enhancements . 20-5

New Arbitrary Group Delay Design Support . 20-6

Arbitrary Magnitude Responses Now Support Minimum Order and
Minimum/Maximum Phase Equiripple Design Options 20-6

Support for Constrained Band Equiripple Designs in MATLAB and
Simulink . 20-6

xxiv Contents

New Sinc Frequency Factor and Sinc Power Design Options for Inverse
Sinc Filters . 20-7

New Inverse Sinc Highpass Filter Designs . 20-7

Filterbuilder and dspfdesign Library Blocks Now Support Different
Numerator and Denominator Orders for IIR Filters 20-7

New Stopband Shape and Stopband Decay Design Options for Equiripple
Highpass Filter Designs . 20-7

FFTW Library Support for Non-Power-of-Two Transform Length 20-7

MATLAB Compiler Support for dsp.DigitalDownConverter and
dsp.DigitalUpConverter . 20-8

Complex Input Support for dsp.DigitalDownConverter 20-8

getFilters Method of dsp.DigitalDownConverter and
dsp.DigitalUpConverter Now Return Actual Fixed-Point Settings . . . 20-8

dsp.SineWave and dsp.BiquadFilter Properties Not Tunable 20-8

System Object DataType and CustomDataType Properties Changes 20-8

System Objects Variable-Size Input Dimensions . 20-9

Conversion of Error and Warning Message Identifiers 20-9

New and Updated Demos . 20-10

Blocks Being Removed in a Future Release . 20-10

R2011a

Product Restructuring . 21-2

Frame-Based Processing . 21-2
General Product-Wide Changes . 21-2
Blocks with a New Input Processing Parameter 21-3
Changes to the Overlap-Add FFT Filter, Overlap-Save FFT Filter, and Short-

Time FFT Blocks . 21-5
Difference Block Changes . 21-5
Signal To Workspace Block Changes . 21-6
Spectrum Scope Block Changes . 21-6
Sample-Based Row Vector Processing Changes . 21-6

New Function for Changing the System Object Package Name from
signalblks to dsp . 21-8

xxv

New Discrete FIR Filter Block . 21-9

New Printing Capability from the Time Scope Block 21-9

Improved Display Updates for the Time Scope Block and System Object
. 21-9

New Implementation Options Added to Blocks in the Filter Designs
Library . 21-9

New dsp.DigitalDownConverter and dsp.DigitalUpConverter System
Objects . 21-10

Improved Performance of FFT Implementation with FFTW library . . . 21-10

Variable-Size Support for System Objects . 21-10

System Objects FullPrecisionOverride Property Added 21-11

'Internal rule' System Object Property Value Changed to 'Full precision'
. 21-11

MATLAB Compiler Support for System Objects 21-12

Viewing System Objects in the MATLAB Variable Editor 21-12

System Object Input and Property Warnings Changed to Errors 21-12

New and Updated Demos . 21-12

Documentation Examples Renamed . 21-13

Downsample Block No Longer Has Frame-Based Processing Latency for a
Frame Size of One . 21-13

SignalReader System Object Accepts Column Input Only 21-13

FrameBasedProcessing Property Removed from the dsp.DelayLine and
dsp.Normalizer System Objects . 21-14

R2010a MAT Files with System Objects Load Incorrectly 21-14

xxvi Contents

R2021a

Version: 9.12

New Features

Bug Fixes

Compatibility Considerations

1

Multicore Tab for Dataflow: Analyze and configure multicore execution
for Simulink models using Dataflow
When a subsystem in a model is configured to use a dataflow execution domain, the Multicore tab is
activated on the Simulink® toolstrip. The Multicore tab consolidates multicore analysis techniques
leveraged in dataflow into a incremental and iterative workflow. For more information, see “Perform
Multicore Analysis for Dataflow”.

Controls on the Multicore tab allow you to:

• Estimate the relative cost of blocks using internal Simulink heuristics.
• Measure average execution times (cost) of blocks inside the dataflow subsystems by simulating

the model with SIL/PIL. This functionality requires an Embedded Coder® license.
• Manually override the block cost values.
• Provide analysis constraints, such as maximum number of threads and threading threshold.
• Run analysis to generate block-to-threads allocation and visualize analysis results.

For an example, see “Multicore Analysis Using a Dataflow Domain”.

Rationally oversampled channelizers
Design a rationally oversampled channelizer by specifying the decimation factor D such that it is not
an integer multiple of the number of frequency bands M. The oversampling ratio M/D in this case is a
rational number.

You can now directly specify the decimation factor in the dsp.Channelizer object and the
Channelizer block using the DecimationFactor property and the Decimation Factor parameter,
respectively. The number of frequency bands is specified using the NumFrequencyBands property in
the object and the Number of frequency bands parameter in the block.

In-Place Memory Optimization: Optimize the memory usage in the
generated code for certain DSP System Toolbox features
The Discrete FIR Filter block and the dsp.FIRFilter object support in-place memory optimization.
Due to in-place optimization, the generated code uses a single buffer to store the input and output
data values. Every time there is a new intermediary output, this output buffer is overwritten to store
that value. For more details, see “In-Place Memory Optimization”.

R2021a

1-2

Fractional delay FIR filter design
Design a fractional delay FIR filter using the designFracDelayFIR function. The function provides
a Kaiser-based FIR approximation of a bandlimited ideal shift filter with a fractional (noninteger)
delay value between [0,1].

Power Meter: Measure power of voltage signal in MATLAB and
Simulink
Compute the average power, peak power, and peak-to-average power ratio of a voltage signal in
MATLAB® and Simulink using the powermeter System object™ and the Power Meter block,
respectively. While calculating the power, the object and the block account for the reference load.

SIMD Code Generation: Use Intel AVX2 to generate optimized code for
certain DSP System Toolbox features
In R2021a, these objects support SIMD code generation using Intel AVX2 technology under the
specified conditions.

MATLAB System objects Conditions
dsp.AnalyticSignal • Input signal is real valued.

• Input signal has a data type of single or
double.

dsp.ComplexBandpassDecimator • Input signal is complex valued.
• Input signal has a data type of single or

double.
dsp.DCBlocker • Input signal has a data type of single or

double.
dsp.Differentiator • Input signal has a data type of single or

double.
dsp.DigitalDownConverter • Input signal has a data type of single or

double.
dsp.DigitalUpConverter • Input signal has a data type of single or

double.
dsp.FIRFilter • Input signal is complex valued.

• Structure is set to 'Direct form
transposed'.

• Coefficients can be real or complex valued

For all other conditions under which the
dsp.FIRFilter object generates SIMD code,
see the Extended Capabilities > C/C++ Code
Generation section on the dsp.FIRFilter
reference page.

dsp.FIRHalfbandInterpolator • Input signal has a data type of single or
double.

1-3

MATLAB System objects Conditions
dsp.HighpassFilter • FilterType is set to 'FIR'.

• Input signal has a data type of single or
double.

dsp.LowpassFilter • FilterType is set to 'FIR'.
• Input signal has a data type of single or

double.
dsp.SampleRateConverter • For upsampling, the ratio of output sample

rate to input sample rate must be an integer.
• For downsampling, the ratio of input sample

rate to output sample rate must be an integer.
• Input signal has a data type of single or

double.
dsp.VariableBandwidthFIRFilter • Input signal has a data type of single or

double.

For a full list, see “System objects in DSP System Toolbox that Support SIMD Code Generation”.

These blocks support SIMD code generation using Intel AVX2 technology under the specified
conditions.

Simulink blocks Conditions
Arbitrary Response Filter • Filter type is set to Single-rate,

Decimator, or Interpolator.
• For Filter type set to Single-rate,

Structure is set to Direct-form FIR or
Direct-form FIR transposed.

• For Filter type set to Decimator, Structure
is set to Direct-form FIR polyphase
decimator and Rate options is set to
Enforce single-rate processing.

• For Filter type set to Interpolator, Rate
options is set to Enforce single-rate
processing.

• Input processing is set to Columns as
channels (frame based).

• Input signal has a data type of single or
double.

Analytic Signal • Input processing is set to Columns as
channels (frame based).

• Input signal has to be real valued.
• Input signal has a data type of single or

double.

R2021a

1-4

Simulink blocks Conditions
Bandpass Filter • Impulse response is set to FIR.

• Filter type is set to Single-rate.
• Structure is set to Direct-form FIR or

Direct-form FIR transposed.
• Use basic elements to enable filter

customization parameter is not selected.
• Input processing is set to Columns as

channels (frame based).
• Input signal has a data type of single or

double.
Bandstop Filter • Impulse response is set to FIR.

• Filter type is set to Single-rate.
• Structure is set to Direct-form FIR or

Direct-form FIR transposed.
• Use basic elements to enable filter

customization parameter is not selected.
• Input processing is set to Columns as

channels (frame based).
• Input signal has a data type of single or

double.
Complex Bandpass Decimator • Input signal is complex valued.

• Input signal has a data type of single or
double.

DC Blocker • Input signal has a data type of single or
double.

Differentiator Filter • Input signal has a data type of single or
double.

Digital Filter Design • Input processing is set to Columns as
channels (frame based).

• Filter Structure (in Import Filter from
Workspace pane) is set to Direct-Form
FIR. You can generate SIMD code even when
the filter is a Direct-Form FIR
Transposed filter. To create a Direct-Form
FIR Transposed filter, select Edit >
Convert Structure, and click Direct-Form
FIR Transposed.

• Input signal has a data type of single or
double.

1-5

Simulink blocks Conditions
Discrete FIR Filter • Input signal is complex valued.

• Filter structure is set to Direct form
transposed.

• Coefficients can be real or complex valued

For all other conditions under which the Discrete
FIR Filter block generates SIMD code, see the
Extended Capabilities > C/C++ Code
Generation section on the Discrete FIR Filter
block reference page.

FIR Halfband Interpolator • Input signal has a data type of single or
double.

Highpass Filter • Filter type is set to FIR.
• Input signal has a data type of single or

double.
Hilbert Filter • Filter type is set to Single-rate,

Decimator, or Interpolator.
• For Filter type set to Single-rate,

Structure is set to Direct-form FIR or
Direct-form FIR transposed.

• For Filter type set to Decimator, Structure
is set to Direct-form FIR polyphase
decimator and Rate options is set to
Enforce single-rate processing.

• For Filter type set to Interpolator:

• Interpolation Factor cannot be equal to
1.

• Rate options is set to Enforce single-
rate processing.

• Input processing is set to Columns as
channels (frame based).

• Input signal has a data type of single or
double.

• Input port dimensions cannot be equal to [1
1].

R2021a

1-6

Simulink blocks Conditions
Inverse Sinc Filter • Filter type is set to Single-rate,

Decimator, or Interpolator.
• For Filter type set to Single-rate,

Structure is set to Direct-form FIR or
Direct-form FIR transposed.

• For Filter type set to Decimator, Structure
is set to Direct-form FIR polyphase
decimator and Rate options is set to
Enforce single-rate processing.

• For Filter type set to Interpolator, Rate
options is set to Enforce single-rate
processing.

• Input processing is set to Columns as
channels (frame based).

• Input signal has a data type of single or
double.

Lowpass Filter • Filter type is set to FIR.
• Input signal has a data type of single or

double.
Nyquist Filter • Filter type is set to Single-rate,

Decimator, or Interpolator.
• For Filter type set to Single-rate,

Structure is set to Direct-form FIR or
Direct-form FIR transposed.

• For Filter type set to Decimator, Structure
is set to Direct-form FIR polyphase
decimator and Rate options is set to
Enforce single-rate processing.

• For Filter type set to Interpolator:

• Interpolation Factor cannot be equal to
1.

• Rate options is set to Enforce single-
rate processing.

• Input processing is set to Columns as
channels (frame based).

• Input signal has a data type of single or
double.

• Input port dimensions cannot be equal to [1
1].

1-7

Simulink blocks Conditions
Sample-Rate Converter • For upsampling, the ratio of output sample

rate to input sample rate must be an integer.
• For downsampling, the ratio of input sample

rate to output sample rate must be an integer.
• Input signal has a data type of single or

double.
Variable Bandwidth FIR Filter • Input signal has a data type of single or

double.

For a full list, see “Simulink Blocks in DSP System Toolbox that Support SIMD Code Generation”.

The SIMD technology significantly improves the performance of the generated code.

Improved filter response visualization for certain DSP System Toolbox
blocks
When you click the View Filter Response button in the dialog box of the Variable Bandwidth FIR
Filter, Variable Bandwidth IIR Filter, and the Notch-Peak Filter blocks, the dynamic filter visualizer
launches and shows the magnitude response of the designed filter. The response is based on the block
dialog box parameters. To update the magnitude response while the dynamic filter visualizer is
running, modify the dialog box parameters and click Apply.

Using the dynamic filter visualizer, you can configure the plot settings, measure signal statistics, find
peak values, place data cursors, and so on from the interface of the visualizer. For more details on the
dynamic filter visualizer interface and the tools that are available, see
dsp.DynamicFilterVisualizer.

Improved Speed Performance in Accelerator Mode for specific blocks
in DSP System Toolbox
When you run these blocks in the accelerator mode, the blocks now run faster.

• FIR Decimation
• FIR Interpolation
• LMS Filter

To run the model containing these blocks in the accelerator mode, on the Simulation tab of the
model, in the Simulate section, select Accelerator from the drop-down list. Build an executable for
the model by clicking Run. The acceleration (Simulink) mode uses this executable in simulations as
long as the model remains structurally unchanged. For more details, see “Perform Acceleration”
(Simulink).

Improved display for Array Plot block
In Simulink, the Array Plot block has a new and improved interface with two toolstrip tabs.

R2021a

1-8

From the toolstrip, you can run the model, modify the settings, turn on measurements, and share an
image of the plot.

For more information, see “Configure Array Plot”.

1-9

Variable-sized input support for timescope object
The timescope object allows you to visualize scalar or variable-sized input signals. If the signal is
variable sized, the number of channels (columns) cannot change.

One-Based index support for Peak Finder block
The Peak Finder block can now output one-based index values for input peaks when you set the
Index base parameter to One. With this setting, if the input vector is [-1.5, 0.5, 0], the peak value is
0.5 and the index of the peak value is 2. The default value for the Index base parameter is Zero. In
this setting, for an input vector of [-1.5, 0.5, 0], the peak value is 0.5 and the index of the peak value
is 1.

Compatibility Considerations
The default index base for the block continues to be zero-based. Existing models created in a previous
release continue to work as expected. If a model created in R2021a has Index base set to One, and
you export the model to a previous release, then the Index base parameter changes to Zero in the
exported model.

Removal of the oversampling ratio functionality
The Oversampling ratio parameter in the Channelizer block has been removed. The
OversamplingRatio property in the dsp.Channelizer object will be removed in a future release.
You can now set the oversampling ratio M/D by specifying the number of frequency bands M and the
decimation factor D.

Compatibility Considerations
Existing code using the OversamplingRatio property and existing models using the Oversampling
ratio parameter continue to work.

If you create a new model containing the Channelizer block in R2021a, and if the Decimation factor
parameter value in the block equals the value of the Number of frequency bands parameter, then
the model containing the block can be exported to a release prior to R2021a. The exported model will
have the Oversampling ratio parameter set to 1.

If the Decimation factor parameter value is less than and is a divisor of the value of the Number of
frequency bands parameter, and the model is exported to a prior release that is not older than
R2020a, the Channelizer will continue to work and the decimation factor will be replaced with the
appropriate oversampling ratio. For a release older than R2020a, the block will be replaced with any
empty subsystem.

If the specified Decimation factor parameter is not equal to and not a divisor of the Number of
frequency bands parameter, the block will be replaced with an empty subsystem.

Digital down-converter (DDC) and digital up-converter (DUC)
examples for FPGA (requires HDL Coder license for code generation)
The “HDL Implementation of a Digital Down-Converter for LTE” and “HDL Implementation of a
Digital Up-Converter for LTE” examples show how to design filter chains for communications

R2021a

1-10

systems. The examples show how to model the behavioral algorithm in MATLABMATLAB and then
compare that reference result against a SimulinkSimulink model that uses HDL-optimized blocks to
implement the algorithm for HDL code generation.

Objects being removed
Certain System objects will be removed
Still runs

These objects will be removed in a future release. Use the equivalent replacements instead.

For details on how to replace your existing code, see the Compatibility Considerations section in
the respective System object reference page.

System object Use This Instead
dsp.ArrayVectorAdder Use + with array expansion.
dsp.ArrayVectorSubtractor Use – with array expansion.
dsp.ArrayVectorMultiplier Use .* with array expansion.
dsp.ArrayVectorDivider Use ./ with array expansion.
dsp.CumulativeProduct cumprod
dsp.CumulativeSum cumsum
dsp.Interpolator dsp.FIRInterpolator, interp1
dsp.Convolver conv
dsp.Autocorrelator xcorr
dsp.Crosscorrelator xcorr
dsp.UniformDecoder udecode
dsp.UniformEncoder uencode
dsp.LDLFactor ldl
dsp.LUFactor lu
dsp.LevinsonSolver levinson
dsp.LowerTriangularSolver mldivide, \ operator
dsp.UpperTriangularSolver mldivide, \ operator
dsp.Counter Create a variable in MATLAB and increment the

variable by 1.
dsp.DelayLine No direct replacement.

dsp.AsyncBuffer object can be used to achieve
a delay line.

dsp.Window window
dsp.KalmanFilter Use Kalman filter functionality in Sensor Fusion

and Tracking Toolbox™.
dsp.PeakToPeak peak2peak

1-11

System object Use This Instead
dsp.PulseMetrics Use the “Pulse and Transition Metrics” functions.

You can use functions like dutycycle,
midcross, pulseperiod, pulsesep, and
pulsewidth among others.

dsp.StateLevels statelevels
dsp.TransitionMetrics Use the “Pulse and Transition Metrics” functions.

You can use functions like falltime,
overshoot, risetime, settlingtime,
slewrate, and undershoot among others.

dsp.ScalarQuantizerDecoder No replacement
dsp.ScalarQuantizerEncoder No replacement
dsp.VectorQuantizerDecoder No replacement
dsp.VectorQuantizerEncoder No replacement

Certain System objects have been removed
Errors

These objects have been removed in R2021a. Use the equivalent replacements instead.

For details on how to replace your existing code, see the Compatibility Considerations section in
the respective System object reference page.

System object Use This Instead
dsp.Histogram histcounts
dsp.Maximum max, dsp.MovingMaximum
dsp.Minimum min, dsp.MovingMinimum
dsp.Mean mean, dsp.MovingAverage
dsp.Median median, dsp.MedianFilter
dsp.RMS rms, dsp.MovingRMS
dsp.StandardDeviation std, dsp.MovingStandardDeviation
dsp.Variance var, dsp.MovingVariance
dsp.DCT dct
dsp.IDCT idct
dsp.Normalizer normalize, vecnorm
dsp.ParametricEQFilter designParamEQ function,

MultibandParametricEQ object from Audio
Toolbox™

dsp.Buffer dsp.AsyncBuffer
dsp.LPCToAutocorrelation poly2ac
dsp.LPCToLSP cos(poly2lsf)
dsp.LPCToRC poly2rc
dsp.LSFToLPC lsf2poly

R2021a

1-12

System object Use This Instead
dsp.RCToAutocorrelation rc2ac
dsp.RCToLPC rc2poly
dsp.BurgAREstimator arburg
dsp.BurgSpectrumEstimator pburg
dsp.CepstralToLPC No replacement
dsp.LPCToCepstral No replacement
dsp.LSPToLPC No replacement

dsp.TimeScope will be removed
Warns

dsp.TimeScope will be removed in a future release. Use timescope instead. The timescope object
has the same properties as the dsp.TimeScope System object. In your code, replace instances of
dsp.TimeScope with timescope.

Starting in R2021a, dsp.TimeScope uses the new timescope interface.

Blocks being removed
Certain blocks will be removed
Still runs

These blocks will be removed in a future release.

• Scalar Quantizer Design
• Vector Quantizer Design

Blocks that have been removed

These blocks have been removed in R2021a. Use the equivalent replacements instead.

Simulink Blocks Use This Instead
Wavelet Analysis DWT
Wavelet Synthesis IDWT

1-13

R2020b

Version: 9.11

New Features

Bug Fixes

Compatibility Considerations

2

New time scope object: Visualize signals in the time domain
Use the timescope object to visualize real- and complex-valued floating-point and fixed-point signals
in the time domain.

The Time Scope window has two toolstrip tabs:

Scopes Tab

On the Scopes tab, you can control the layout and configuration settings, and set the display settings
of the Time Scope. You can also generate script to recreate your time scope with the same settings.
When doing so, an editor window opens with the code required to recreate your timescope object.

Measurements Tab

In the Measurements tab, all measurements are made for a specified channel.

• Data Cursors — Display the screen cursors.
• Signal Statistics — Display various statistics of the selected signal, such as maximum or

minimum values, peak-to-peak values, mean, median, and RMS.
• Peak Finder — Display peak values for the selected signal.
• Bilevel — Measure transitions, overshoots, undershoots, and cycles.
• Triggers — Set triggers to sync repeating signals and pause the display when events occur.

R2020b

2-2

https://www.mathworks.com/help/releases/R2020b/dsp/ref/timescope.html

SIMD Code Generation: Use Intel AVX2 to generate optimized code for
certain DSP System Toolbox features
The following features support SIMD code generation using Intel AVX2 technology under these
conditions:

dsp.FIRFilter System object

• Filter structure is set to 'Direct form' or 'Direct form transposed'.
• Input signal is real-valued with real filter coefficients.
• When filter structure is set to 'Direct form', the input signal can also be complex-valued with

real or complex filter coefficients.
• Input signal has a data type of single or double.

For more details, see dsp.FIRFilter System object.

dsp.FIRDecimator System object

• Filter structure is set to 'Direct form'.
• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

For more details, see dsp.FIRDecimator System object.

dsp.FIRInterpolator System object

• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

For more details, see dsp.FIRInterpolator System object.

dsp.LMSFilter System object

• Method is set to 'LMS' or 'Normalized LMS'.

2-3

https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.firfilter-system-object.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.firdecimator-system-object.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.firinterpolator-system-object.html

• WeightsOutput is set to 'None' or 'Last'.
• Input signal is real-valued.
• Input signal has a data type of single or double.

For more details, see dsp.LMSFilter System object.

FIR Interpolation block

• Input processing is set to Columns as channels (frame based).
• Rate options is set to Enforce single-rate processing.
• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

For more details, see FIR Interpolation block.

FIR Decimation block

• Filter structure is set to Direct form.
• Input processing is set to Columns as channels (frame based).
• Rate options is set to Enforce single-rate processing.
• Input signal is real-valued with real filter coefficients.
• Input signal is complex-valued with real or complex filter coefficients.
• Input signal has a data type of single or double.

For more details, see FIR Decimation block.

Discrete FIR Filter block

• Filter structure is set to Direct form or Direct form transposed.
• Input processing is set to Columns as channels (frame based).
• Input signal is real-valued with real filter coefficients.
• When Filter structure is set to Direct form, the input signal can also be complex-valued with

real or complex filter coefficients.
• Input signal has a data type of single or double.

For more details, see Discrete FIR Filter block.

The SIMD technology significantly improves the performance of the generated code.

One-sided short-time Fourier transform in dsp.STFT and dsp.ISTFT
objects
When you set the FrequencyRange property to 'onesided', the dsp.STFT object computes the
one-sided short-time Fourier transform of the real input signal. Correspondingly, the one-sided
inverse short-time FFT is computed when the FrequencyRange property of the dsp.ISTFT object is
set to 'onesided'. To compute the two-sided short-time FFT and inverse short-time FFT, set the
FrequencyRange property to 'twosided'.

R2020b

2-4

https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.lmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/firinterpolation.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.stft.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.istft.html

Using the getFrequencyVector function, you can obtain the vector of frequencies at which the
short-time FFT is computed.

In-place Memory Optimization: Optimize the memory usage in the
generated code for certain DSP System Toolbox blocks
The Array-Vector Add, Array-Vector Subtract, Array-Vector Multiply, and the Array-Vector Divide
blocks in DSP System Toolbox support in-place memory optimization when the input to the block is
real.

Due to in-place optimization, the generated code uses a single buffer for storing the output data
values. Every time there is a new intermediary output in the model, this output buffer is overwritten
to store that value.

For example, in this model, there is a sequence of Array-Vector Add blocks connected to each other.

Each block adds a vector to its input data and generates an output that is of the same size as the
input.

This image shows a sequence of three s-functions generated in the in-place optimized generated
code. Each block of s-function corresponds to the respective Array-Vector Add block in the Simulink
model. In each s-function, the output buffer rtb_ArrayVectorAdd2[] rewrites its value every time the
Array-Vector Add block has an updated output.

2-5

https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.stft.getfrequencyvector.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/arrayvectoradd.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/arrayvectorsubtract.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/arrayvectormultiply.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/arrayvectordivide.html

R2020b

2-6

The generated code is efficient and uses less memory.

Improved Speed Performance in Accelerator Mode for specific blocks
in DSP System Toolbox
When you run the following blocks in the accelerator mode, the blocks now run faster.

• Discrete FIR Filter
• FIR Rate Conversion –– To see the speedup in the FIR Rate Conversion block, set Rate options to

Allow multirate processing.
• Arbitrary Response Filter
• Bandpass Filter
• Bandstop Filter
• Hilbert Filter
• Inverse Sinc Filter
• Nyquist Filter
• Digital Filter Design
• Analytic Signal

To run the model containing these blocks in the accelerator mode, on the Simulation tab of the
model, in the Simulate section, select Accelerator from the drop-down list. Build an executable for
the model by clicking Run. The acceleration (Simulink) mode uses this executable in simulations as
long as the model remains structurally unchanged. For more details, see Perform Acceleration
(Simulink).

Visualize logged Stateflow states in the Logic Analyzer
When you log signals in Stateflow® charts, you can use the Logic Analyzer to visualize the state
changes. To log Stateflow states, in the Simulation tab, under Prepare, select a state logging option.
In the Logic Analyzer, you'll see your states marked for logging in the left column.

For more details about how to log Stateflow signals, see Log Simulation Output for States and Data
(Stateflow).

HDL-optimized FIR Decimation block and System object: Downsample
signals using a FIR decimation filter with a hardware-friendly
interface and architecture (requires HDL Coder for code generation)
The FIR Decimation HDL Optimized block downsamples signals using a transposed or systolic filter
architecture. The block provides an efficient hardware implementation and uses hardware-friendly
control signals. The block supports HDL code generation with HDL Coder™.

This algorithm is also available with the dsp.HDLFIRDecimation System object.

Gigasample-per-second (GSPS) CIC Decimation and CORDIC Algorithm:
Increase throughput of HDL-optimized CIC decimation and complex-to-

2-7

https://www.mathworks.com/help/releases/R2020b/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/firrateconversion.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/arbitraryresponsefilter.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/bandpassfilter.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/bandstopfilter.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/hilbertfilter.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/inversesincfilter.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/nyquistfilter.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/digitalfilterdesign.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/analyticsignal.html
https://www.mathworks.com/help/releases/R2020b/simulink/ug/what-is-acceleration.html
https://www.mathworks.com/help/releases/R2020b/simulink/ug/performing-acceleration.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/logicanalyzer-app.html
https://www.mathworks.com/help/releases/R2020b/stateflow/ug/basic-approach-to-logging-states-and-local-data.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/firdecimationhdloptimized.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.hdlfirdecimation-system-object.html

magnitude-angle conversion by using frame-based input (requires
HDL Coder for code generation)
You can now generate frame-based waveforms from the CIC Decimation HDL Optimized and Complex
to Magnitude-Angle HDL Optimized blocks. Each block accepts and returns a column vector of
elements that represent samples in time. The input vector can contain up to 64 samples. When you
use frame-based input with the CIC Decimation HDL Optimized block, you must use a fixed
decimation factor.

This capability increases throughput in hardware designs. For a list of all blocks that support frame-
based input and output for HDL code generation, see High Throughput HDL Algorithms.

This feature is also available with the dsp.HDLCICDecimation and
dsp.HDLComplexToMagnitudeAngle System objects.

To generate HDL code, you must have the HDL Coder product.

Dataflow domain analysis integrated with Performance Advisor
You can now use the Performance Advisor to find the optimal latency settings for all Dataflow
subsystems in your model in a single step.

To find the optimal latency settings for the Dataflow subsystems in your model, open the Performance
Advisor. In the Performance Advisor > Simulation > Checks that Require Simulation to Run
folder, run the Check Dataflow Domain Settings check.

MATLAB Compiler support for dsp.ArrayPlot
You can use the mcc function to compile MATLAB code containing a dsp.ArrayPlot.

Functionality being removed or changed
dsp.TimeScope will be removed
Still runs

dsp.TimeScope will be removed in a future release. Use timescope instead. The timescope object
has the same properties as the dsp.TimeScope, therefore, no updates to your code are required
except replacing instances of dsp.TimeScope with timescope.

Spectrum Analyzer block defaults changed
Behavior change

Starting in R2020b, by default, the Spectrum Analyzer block uses the filter bank algorithm as the
spectrum estimation method and exponential averaging as the averaging method:

• The default value of the Method parameter is now Filter Bank.
• The default value of the Averaging method parameter is now Exponential.

Compatibility Considerations
For existing models with a Spectrum Analyzer, the default values are not changed. For new
visualizations with the Spectrum Analyzer block, you may see some changes in the output because of

R2020b

2-8

https://www.mathworks.com/help/releases/R2020b/dsp/ref/cicdecimationhdloptimized.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2020b/dsp/ug/high-throughput-hdl-algorithms.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.hdlcicdecimation-system-object.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/dsp.hdlcomplextomagnitudeangle-system-object.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/spectrumanalyzer.html

the spectrum estimation method and averaging method. If you want to use the previous default
values, set:

• Method to Welch
• Averaging method to Running

HDL Minimum Resource FFT and HDL Streaming FFT blocks have been removed
Errors

The HDL Minimum Resource FFT and HDL Streaming FFT blocks have been removed. Use the FFT
HDL Optimized block instead.

• When replacing the HDL Minimum Resource FFT block, set the Architecture parameter of the
FFT HDL Optimized block to Burst Radix 2.

• When replacing the HDL Streaming FFT block, set the Architecture parameter of the FFT HDL
Optimized block to Streaming Radix 2^2.

For more information, see Implement FFT for FPGA Using FFT HDL Optimized Block.

Matrix Viewer and Waterfall blocks will be removed
Still runs

The Matrix Viewer and Waterfall blocks will be removed in a future release.

2-9

https://www.mathworks.com/help/releases/R2020b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2020b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2020b/dsp/ug/generate-hdl-code-for-fft-hdl-optimized-block.html

R2020a

Version: 9.10

New Features

Bug Fixes

Compatibility Considerations

3

SIMD Code Generation: Use Intel AVX2 to generate optimized code for
certain DSP System Toolbox blocks
FIR Interpolation and FIR Decimation blocks

The FIR Interpolation and FIR Decimation blocks now support SIMD code generation using Intel
AVX2 technology when Input processing is set to Columns as channels (frame based), Rate
options is set to Enforce single-rate processing, and the signal is real-valued with a data
type of single or double. The SIMD technology significantly improves the performance of the
generated code.

LMS Filter block

The LMS Filter block supports SIMD code generation using Intel AVX2 technology when the block's
Algorithm parameter is set to LMS or Normalized LMS and the signal is real-valued with a data
type of single or double.

Automatically leverage SIMD for multicore dataflow simulations
When your host CPU supports AVX2 technology, and you are using a supported mex compiler,
multithreaded simulations of supported Dataflow subsystems automatically leverage SIMD. This can
significantly improve the performance of multithreaded simulations of dataflow subsystems.

Supported compilers include

• Windows®: Microsoft® Visual C++ compilers.
• Linux®: gcc compilers

New Biquadratic SOS Filter Object
The dsp.SOSFilter System object implements a biquadratic second-order section IIR filter in
MATLAB. The numerator and denominator coefficients and the filter section scale values are tunable
which means their values can change even after the System object is locked. These values are
specified using the Numerator, Denominator, and ScaleValues properties, respectively.

Multirate processing in FIR Rate Conversion block
The Rate options parameter now allows the block to operate in either a single-rate or a multirate
processing mode.

• Enforce single-rate processing –– The output frame size is L/K times the input frame size,
where L is the interpolation factor and K is the decimation factor.

The output signal rate in Simulink equals the input signal rate in Simulink.
• Allow multirate processing –– The output frame size equals the input frame size.

The output signal rate in Simulink is L/K times the input signal rate.

All blocks connected to the output operate at the output signal rate and all blocks connected to
the input operate at the input signal rate.

R2020a

3-2

https://www.mathworks.com/help/releases/R2020a/dsp/ref/firinterpolation.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/lmsfilter.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.sosfilter-system-object.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/islocked.html

Non-Maximally Decimated Channelizers
You can now specify the oversampling ratio in the dsp.Channelizer System object and the
Channelizer block. Oversampling ratio O is a positive divisor of the number of frequency bands M.

The decimation factor D of the channelizer is determined using the ratio D = M/O.

When the oversampling ratio is an integer greater than 1, the channelizer is known as the non-
maximally decimated channelizer or oversampled channelizer. Non-maximally decimated channelizers
offer increased design freedom, but at the expense of increased computational cost.

Complex Support for Channelizer and Channel Synthesizer Prototype
Coefficients
The lowpass prototype coefficients of the channelizer and the channel synthesizer objects and blocks
can be complex.

If you specify complex coefficients, the channelizer and channel synthesizer design a prototype filter
that is centered at a nonzero frequency, also known as a bandpass filter. The modulated versions of
the prototype bandpass filter appear with respect to the prototype filter, and are wrapped around the
frequency range [−Fs Fs]. For an example, see Channelizer with Complex Coefficients.

Enhancements to designMultirateFIR function
You can now specify the transition width (TW) as a design parameter to the function as an alternative
to the half polyphase length (P) parameter.

The function also supports a 'SystemObject' flag, which when set to true returns one of the
following multirate System objects:

• dsp.FIRInterpolator –– When L > 1 and M = 1, where L is the interpolation factor and M is
the decimation factor.

• dsp.FIRDecimator –– When L = 1 and M > 1.
• dsp.FIRRateConverter –– When L > 1 and M > 1.

When the 'SystemObject' flag is set to false, the function returns a vector of filter coefficients.

For an example, see Design a dsp.FIRInterpolator System object.

UDP Sender supports large message sizes
The UDP Sender object and block now support message sizes up to 67108864 bytes. The size can be
specified through the SendBufferSize property in the object, and the Send buffer size (bytes)
parameter in the UDP Send block dialog box.

Variable CIC Decimation Factor: Specify decimation factor as an input
to the CIC Decimation HDL Optimized block (requires HDL Coder for
code generation)
You can specify the decimation factor for the CIC Decimation HDL Optimized block as an input port.
You can also now optionally enable automatic gain correction.

3-3

https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.channelizer-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/channelizer.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.channelizer-system-object.html#mw_77336584-ea96-4e2c-ad03-ce407c80aea3
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.firinterpolator-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.firdecimator-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.firrateconverter-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/designmultiratefir.html#mw_54929b05-4969-4935-b35e-3740b27c571e
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.udpsender-system-object.html#mw_144d9498-23e6-43cb-9745-5e9972ad5437
https://www.mathworks.com/help/releases/R2020a/dsp/ref/udpsend.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/cicdecimationhdloptimized.html

These features are also available when using the dsp.HDLCICDecimation System object.

Gigasample-per-second (GSPS) NCO: Generate frame-based output
from HDL-optimized NCO for high speed applications (requires HDL
Coder for code generation)
You can now generate frame-based waveforms from the NCO HDL Optimized block. The block returns
a vector where each element represents a sample in time. Set the Samples per frame parameter to
the desired output vector size.

This capability increases throughput in hardware designs. For a list of all blocks that support frame-
based input and output for HDL code generation, see High Throughput HDL Algorithms.

This feature is also available when using the dsp.HDLNCO System object. Set the SamplesPerFrame
property to the desired output vector size.

To generate HDL code, you must have the HDL Coder product.

Suggestions for optimal model settings in Dataflow Simulation
Assistant
The Dataflow Simulation Assistant now recommends optimal model settings to improve simulation
performance of your model. To open the Dataflow Simulation Assistant, in the Execution tab of the
Property Editor, click Dataflow assistant.

To improve simulation performance, in the Dataflow Simulation Assistant, next to Change model
settings for simulation performance click Accept all. For more information on the optimal model
settings, see Simulation of Dataflow Domains.

Dataflow subsystems supported in model reference simulation targets
A Dataflow Subsystem inside a referenced model that executes in accelerator mode (uses a
simulation target) can now simulate using multiple threads.

Functionality being removed or changed
Removal of DirectFeedthrough property in dsp.VariableIntegerDelay System object

The DirectFeedthrough property in the dsp.VariableIntegerDelay System object has been
removed.

Compatibility Considerations
Make sure you remove all references to this property from your MATLAB code. The System object
will operate in direct feedthrough mode only.

dsp.AudioPlayer and dsp.AudioRecorder objects removed
Errors

R2020a

3-4

https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.hdlcicdecimation-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/ncohdloptimized.html
https://www.mathworks.com/help/releases/R2020a/dsp/ug/high-throughput-hdl-algorithms.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.hdlnco-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ug/dataflow-domains.html#mw_5321c511-4e65-4aac-9803-a2beb102ca3c
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dataflowsubsystem.html

Starting in R2020a, using the following System objects throws an error message. Use the equivalent
replacements instead.

System object Use This Instead
dsp.AudioRecorder audioDeviceReader object in Audio Toolbox.

Note The ability to select or change the audio
driver through the DSP System Toolbox
preferences dialog box has been removed. You
can specify the driver in the
audioDeviceReader object by using the
Driver property.

dsp.AudioPlayer audioDeviceWriter object.

Note The ability to select or change the audio
driver through the DSP System Toolbox
preferences dialog box is removed. You can
specify the driver in the audioDeviceWriter
object by using the Driver property. This
property is enabled only if you have the Audio
Toolbox.

For more details, see the Compatibility Considerations sections in the System object reference
pages.

HDL-optimized NCO requires valid input port
Behavior change

In previous releases, the input validIn port of the NCO HDL Optimized block was optional. It is now
required, and renamed valid. If you are using no other input ports, the block uses the valid signal as
an enable signal.

When you use the dsp.HDLNCO System object, you must specify an input validIn argument. If you
are using no other input arguments, the object uses the validIn argument as an enable signal.

HDL-optimized NCO with floating-point inputs applies phase quantization
Behavior change

The output waveform returned from floating-point input values has changed. The output waveform
now matches that returned from the same input values specified in fixed-point types.

In previous releases, when using floating-point input types, the NCO HDL Optimized block did not
quantize the phase internally. The block expected floating-point phase increment and phase offset
inputs specified in radians. Now, the block quantizes the phase internally, and you must specify the
input phase increment and offset in terms of the quantized size, for both floating-point and fixed-point
input types.

This change also applies to the dsp.HDLNCO System object.

For example, in previous releases, for a floating-point HDL NCO to generate output samples with a
desired output frequency of F0 and sample frequency of Fs, you had to specify the phase increment as
2π(F0/Fs) and phase offset as π/2.

3-5

https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.audiorecorder-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.audioplayer-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/audiodevicewriter-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/audiodevicewriter-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/ncohdloptimized.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.hdlnco-system-object.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/ncohdloptimized.html
https://www.mathworks.com/help/releases/R2020a/dsp/ref/dsp.hdlnco-system-object.html

Now, you must specify the phase increment and phase offset in terms of the quantized size, N. These
input values are the same as the input values you use with fixed-point types. Specify the phase
increment as (F0×2N)/Fs, and the phase offset as (π/2)2N/2π, or 2N/4.

NCO HDL Optimized block now ignores LUTRegisterResetType parameter
Behavior change

In previous releases, you could choose from two options for the LUTRegisterResetType parameter
on the HDL Block Properties dialog of the NCO HDL Optimized block. The two options were
default, and none. Starting in R2020a, the block ignores the parameter setting and uses none for
this parameter value. This option does not connect a reset signal to the LUT registers. This
configuration enables the synthesis tool to determine whether to implement the lookup tables with
LUTs or BRAM.

Signal data no longer streams to the Logic Analyzer when signal logging is disabled
Behavior change

Previously, signals marked for logging have streamed to the Logic Analyzer, regardless of the
setting for Signal logging in the model configuration parameters. Starting in R2020a, signals
marked for logging stream to the Logic Analyzer only when signal logging is enabled for a model.

To view data in the Logic Analyzer, you must enable signal logging for the model. (Logging is on by
default.) To enable signal logging, open Model Settings from the toolstrip, navigate to the Data
Import/Export pane, and select Signal logging.

R2020a

3-6

https://www.mathworks.com/help/releases/R2020a/dsp/ref/logicanalyzer-app.html

R2019b

Version: 9.9

New Features

Bug Fixes

Compatibility Considerations

4

SIMD code from Discrete FIR Filter Block: Generate optimized code
using Intel AVX2 for FIR Filters in Simulink
When Filter structure is set to Direct form, and the signal is real-valued with a data type of single
or double, the Discrete FIR Filter block supports SIMD code generation using Intel AVX2 technology.
The SIMD technology significantly improves the performance of the generated code, in most cases
meeting or exceeding the simulation performance.

HDL-optimized CIC Decimation block and System object: Downsample
signals using a cascade integrator-comb (CIC) filter (requires HDL
Coder for code generation)
The CIC Decimation HDL Optimized block downsamples signals using a CIC filter. The block provides
an efficient hardware implementation and uses hardware-friendly control signals. The block supports
HDL code generation with HDL Coder.

This algorithm is also available as a System object, dsp.HDLCICDecimation.

Discrete FIR Filter HDL Optimized block: Filter using complex
coefficient values (requires HDL Coder for code generation)
The Discrete FIR Filter HDL Optimized block now supports complex-valued coefficients. If both
coefficients and input data are complex, the block implements each filter tap with three multipliers. If
either data or coefficients are complex but not both, the block uses two multipliers for each filter tap.
You can use complex coefficients with all architectures and with programmable coefficients.

This feature is also available with the dsp.HDLFIRFilter System object.

Improved display for dsp.DynamicFilterVisualizer
In MATLAB, the dynamic filter visualizer object, dsp.DynamicFilterVisualizer, has a new and
improved interface:

R2019b

4-2

https://www.mathworks.com/help/releases/R2019b/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/cicdecimationhdloptimized.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.hdlcicdecimation-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/discretefirfilterhdloptimized.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.hdlfirfilter-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.dynamicfiltervisualizer.html

You can visualize dynamic filters with improved graphics, more responsiveness, and better
interactivity. You can access settings and measurements via tabs and toolstrips.

For more information, see Configure Array Plot MATLAB Object.

Improved display for dsp.ArrayPlot
In MATLAB, the Array Plot object dsp.ArrayPlot has a new and improved interface with two
toolstrip tabs:

4-3

https://www.mathworks.com/help/releases/R2019b/dsp/ug/configure-array-plot-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.arrayplot-system-object.html

By clicking different buttons in the toolstrip, you can configure settings, turn on measurements, and
share an image of the plot.

For more information, see Configure Array Plot MATLAB Object.

Compatibility Considerations
• The dsp.ArrayPlot no longer supports mcc compilation.
• The ReduceUpdates property is no longer applicable. The new Array Plot interface continually

tries to improve performance with update reduction as needed.

dsp.MatrixViewer support for multiple cursor measurements
When you activate cursors in the dsp.MatrixViewer, two horizontal and two vertical cursors
appear. As you move the cursors around, the dsp.MatrixViewer shows the values at the cursor line

R2019b

4-4

https://www.mathworks.com/help/releases/R2019b/dsp/ug/configure-array-plot-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.arrayplot-system-object.html
https://www.mathworks.com/help/releases/R2019b/compiler/mcc.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.matrixviewer-system-object.html

intersections and the difference between two intersection points. For more information, see Cursor
Measurements.

Playback control behavior changed for scopes in referenced models
When you use a scope in a referenced model, the playback controls in the scope now match the
playback controls of the last model you interacted with that contains the scope. For example, if you
opened your scope from a model referenced by another model with the Model block, the run button

 in the scope runs the top level model. If the referenced model is opened as a root model, the run
button runs the referenced model in isolation.

This change affects the Time Scope, Spectrum Analyzer, and Array Plot blocks, as well as the Logic
Analyzer app.

For more information, see Scopes in Referenced Models (Simulink).

Output of colored noise generator can be bounded
The output generated from the dsp.ColoredNoise object can be bounded between +1 and −1 when
you set the BoundedOutput property to true. Similarly in Simulink, the output of the Colored Noise
block can be bounded between +1 and −1 by selecting the Guarantee the output is bounded
(+/-1) parameter.

Blocks with finite states supported for unfolding in Dataflow
subsystems
When cost analysis identifies a single block in a Dataflow subsystem that is computationally
dominant, the system uses unfolding technology to improve the throughput through parallelization. In
past releases, only stateless blocks were supported for unfolding. In 19b, blocks with finite states,
such as the FIR Filter block, are also supported for unfolding.

For more information, see Types of Parallelism.

Simulate Dataflow subsystems using multiple threads in Rapid
Accelerator mode
Dataflow subsystems now support multithreaded simulation in Rapid Accelerator mode. For more
information, see Multicore Simulation and Code Generation of Dataflow Domains.

Virtual bus support at Dataflow subsystem boundaries for
heterogeneous signals
You can now use virtual buses with mixed signal dimensions and data types at the boundaries of
Dataflow subsystems for single-threaded simulation. For multithreaded simulation of Dataflow
subsystems, replace virtual buses at the boundaries with non-virtual buses.

4-5

https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.matrixviewer-system-object.html#mw_eb43521d-52ba-4da6-b25a-7e5507cbb77c
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.matrixviewer-system-object.html#mw_eb43521d-52ba-4da6-b25a-7e5507cbb77c
https://www.mathworks.com/help/releases/R2019b/simulink/slref/model.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/arrayplot.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/logicanalyzer-app.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/logicanalyzer-app.html
https://www.mathworks.com/help/releases/R2019b/simulink/ug/scope-block-tasks.html#mw_9197fd11-8b1e-4bc3-bb69-1d902addb638
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.colorednoise-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/colorednoise.html
https://www.mathworks.com/help/releases/R2019b/dsp/ug/multicore-simulation-and-code-generation-of-dataflow-systems.html#mw_cf8fc9ca-9bde-4686-a2a4-53d7d6c6cb72
https://www.mathworks.com/help/releases/R2019b/dsp/ug/multicore-simulation-and-code-generation-of-dataflow-systems.html

Functionality being removed or changed
Certain System objects will be removed
Warns

Starting in R2019b, using the following System objects throw a warning message. These objects will
be removed in a future release. Use the equivalent replacements instead.

System object Use This Instead
dsp.Buffer dsp.AsyncBuffer
dsp.Histogram histcounts
dsp.PeakFinder findpeaks, islocalmin
dsp.Maximum max, dsp.MovingMaximum
dsp.Minimum min, dsp.MovingMinimum
dsp.Mean mean, dsp.MovingAverage
dsp.Median median, dsp.MedianFilter
dsp.RMS rms, dsp.MovingRMS
dsp.StandardDeviation std, dsp.MovingStandardDeviation
dsp.Variance var, dsp.MovingVariance

For more details, see the Compatibility Considerations sections in the System object reference
pages.

R2019b

4-6

https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.buffer-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.asyncbuffer-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.histogram-system-object.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/histcounts.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.peakfinder-system-object.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/findpeaks.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/islocalmin.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.maximum-system-object.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.movingmaximum-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.minimum-system-object.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.movingminimum-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.mean-system-object.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/mean.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.movingaverage-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.median-system-object.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/median.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.medianfilter-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.rms-system-object.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/rms.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.movingrms-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.standarddeviation-system-object.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/std.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.movingstandarddeviation-system-object.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.variance-system-object.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/var.html
https://www.mathworks.com/help/releases/R2019b/dsp/ref/dsp.movingvariance-system-object.html

R2019a

Version: 9.8

New Features

Bug Fixes

Compatibility Considerations

5

Direct and Inverse Short-Time Fourier Transform: Analyze and process
streaming signals in the frequency domain and synthesize them with
perfect reconstruction using overlap and add
The dsp.STFT and dsp.ISTFT objects compute the short-time Fourier transform (STFT) and inverse
short-time Fourier transform (ISTFT) of streaming data with time-varying spectral characteristics.
Examples of such signals include audio, seismic data, and ECG. To analyze the frequency content of
these signals, the dsp.STFT object windows the data into shorter segments with relatively
nonvarying spectral characteristics and applies FFT on the segmented data. To reconstruct the
original time-domain signal, the dsp.ISTFT object performs an ISTFT on the individual transformed
subbands followed by overlap-add operations.

Fourth-Order Section Filter: Model and simulate cascaded fourth-
order section IIR filters in MATLAB
The dsp.FourthOrderSectionFilter object creates a cascade of fourth-order IIR filter sections in
MATLAB.

Spectrum Analyzer improvements for exponential averaging, mixed-
complexity inputs, and MATLAB script generation
The Spectrum Analyzer block and System object now allow mixed-complexity inputs, exponential
averaging, and generation of MATLAB scripts.

Smooth data with exponential averaging

The Spectrum Analyzer block and dsp.SpectrumAnalyzer System object now have two averaging
modes for smoothing input samples: running averages (existing) and exponential averages (new). To
specify the smoothing options for your input data, use these properties:

• Averaging method (AveragingMethod) — Choose Running or Exponential.
• Averages (SpectralAverages) — For running averages, choose the number of spectrum

estimates to include in the running average.
• Forgetting factor (ForgettingFactor) — For exponential averaging, weigh previous spectrum

estimates with a forgetting factor in the range (0,1].

For more details about the averaging methods, see Spectrum Analyzer Algorithms.

Display block inputs with different complexity

In the Spectrum Analyzer block, you can now visualize frequencies of inputs with different
complexities. The signals must have the same sample rate and frame size, but can have both real and
complex values.

Mixed-complexity inputs are already supported by the dsp.SpectrumAnalyzer System object.

Generate MATLAB script from dsp.SpectrumAnalyzer

After you modify the dsp.SpectrumAnalyzer from the UI, you can generate a MATLAB script to
automatically set up the Spectrum Analyzer with your modified properties. To generate the script, use
one of these methods:

R2019a

5-2

https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.stft.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.istft.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.spectrumanalyzer-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/spectrumanalyzer.html#btqjkji.btu5vfl
https://www.mathworks.com/help/releases/R2019a/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.spectrumanalyzer-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.spectrumanalyzer-system-object.html

• In the Spectrum Analyzer window, select File > Generate MATLAB Script or the Generate

MATLAB script button .
• From the command line, run the generateScript object function. For example:

sa = dsp.SpectrumAnalyzer
show(sa)
% change settings
generateScript(sa)

Note The script only generates commands for settings that are available from the command line,
applicable to the current visualization, and changed from the default value.

Exponential Spectrum Averaging: Smooth spectrum estimation and
analysis efficiently over time using exponential averaging
You can now smooth the power spectral density (PSD) data computed by the following System objects
and blocks:

• dsp.SpectrumEstimator
• dsp.CrossSpectrumEstimator
• dsp.TransferFunctionEstimator
• Spectrum Estimator
• Cross-Spectrum Estimator
• Discrete Transfer Function Estimator

These objects and blocks now offer two averaging modes to smooth the PSD data: running mode and
exponential weighting mode. In the running mode, the PSD data is averaged over the last N spectral
data vectors. In the exponential weighting mode, the algorithm computes the average over the
current and the previous PSD vector weighted by an exponentially decaying forgetting factor.

These settings control the smoothing options:

• Averaging method (AveragingMethod) — Choose Running or Exponential.
• Number of spectral averages (SpectralAverages) — For running averages, choose the

number of spectrum estimates to include in the running average.
• Forgetting factor (ForgettingFactor) — For exponential averaging, weigh previous spectrum

estimates with a forgetting factor in the range (0,1].

For more details about the averaging methods, see the Algorithms section in
dsp.CrossSpectrumEstimator.

Complex Data over UDP: Send and receive complex data directly over
UDP in MATLAB and Simulink
You can now transmit complex data over a UDP network using the following UDP sender and receiver
objects and blocks:

• dsp.UDPSender

5-3

https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.spectrumestimator-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.crossspectrumestimator-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.transferfunctionestimator-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/spectrumestimator.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/crossspectrumestimator.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/discretetransferfunctionestimator.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.crossspectrumestimator-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.udpsender-system-object.html

• dsp.UDPReceiver
• UDP Send
• UDP Receive

Receive data coming from a UDP network as complex data by setting the IsMessageComplex
property to true in the dsp.UDPReceiver object or by selecting the Message is complex
parameter in the UDP Receive block.

Stream signals only from a defined interval within audio files when
using the From Multimedia File block
You can specify a range of samples to stream from an audio file using the Read range parameter in
the From Multimedia File block. When you run a model that contains this block, the From Multimedia
File block streams data only from the interval defined by the Read range parameter.

New targets supported for multicore code generation from a dataflow
subsystem
The following targets are now supported for multicore code generation from dataflow subsystems. In
past releases, code generated from a dataflow subsystem for these targets was single-threaded.

• Mac OS desktop targets– Code generated for a Mac OS desktop target is now multithreaded
using OpenMP.

• Embedded Coder targets using Linux and VxWorks® operating systems – Code generated
for these Embedded Coder targets is now multithreaded using POSIX threads.

For more information on multicore code generation from dataflow subsystems, see Multicore
Simulation and Code Generation of Dataflow Domains.

Code generation for these targets requires a Simulink Coder™ or an Embedded Coder license.

Blocks with constant sample times supported in dataflow subsystems
Blocks using constant (inf) sample times area now supported in dataflow subsystems. In previous
releases, only blocks specifying inherited sample times were supported.

Improve simulation performance of dataflow subsystems using the
Dataflow Simulation Assistant
To improve simulation performance of a system, it can be advantageous to increase the latency of the
system. To find the optimal latency value for a dataflow subsystem, use the Dataflow Simulation
Assistant. Starting in 19a, the Dataflow Simulation Assistant notifies you when a simulation with
profiling or model compilation is required for the dataflow analysis. It also displays the progress of
the dataflow analysis.

When the analysis completes, click Accept to apply the suggested latency to the subsystem.

R2019a

5-4

https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.udpreceiver-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/udpsend.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/udpreceive.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/frommultimediafile.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/frommultimediafile.html
https://www.mathworks.com/help/releases/R2019a/dsp/ug/multicore-simulation-and-code-generation-of-dataflow-systems.html
https://www.mathworks.com/help/releases/R2019a/dsp/ug/multicore-simulation-and-code-generation-of-dataflow-systems.html

For more information, see Dataflow Domain

Identify scopes unsupported for multithreading in dataflow
subsystems at edit-time
When you add one of the scope blocks inside a dataflow subsystem, the software highlights the block
and displays a warning that the Scope block does not support multithreaded execution. Place the
Scope outside the dataflow subsystem to simulate the subsystem using multiple threads.

5-5

https://www.mathworks.com/help/releases/R2019a/dsp/ug/dataflow-domains.html

Use the Timing Legend to highlight blocks in a dataflow domain
You can now highlight blocks in a dataflow domain using the Timing Legend. To view the highlighting,

1 In the Simulink menu, select Display > Sample Time > Colors.
2 Update the model diagram by selecting Simulation > Update Diagram.
3 To open the Timing Legend, select Display > Sample Time > Timing Legend.
4 In the Timing Legend, set Highlight to All or Origin.
5 In the legend, select Data Driven to highlight blocks in the dataflow domain.

R2019a

5-6

Discrete FIR Filter HDL Optimized block: Use programmable
coefficients with a fully parallel systolic architecture (requires HDL
Coder for code generation)
The Discrete FIR Filter HDL Optimized block now provides the option to specify coefficients using an
input port when you select the Direct form systolic architecture. You cannot use programmable
coefficients with transposed or party serial systolic architectures.

This feature is also available with the dsp.HDLFIRFilter System object.

Discrete FIR Filter HDL Optimized block: Optimize symmetric and
antisymmetric coefficients and optional reset port for a partly serial
systolic architecture (requires HDL Coder for code generation)
The Discrete FIR Filter HDL Optimized block now provides optimization of symmetric and
antisymmetric coefficients and an optional reset port for any architecture, including a serial systolic
architecture with resource sharing. This optimization reduces the number of multipliers and makes
efficient use of FPGA DSP resources. The reset port provides a local synchronous reset of the data
path registers.

These features are also available with the dsp.HDLFIRFilter System object.

The options for configuring a serial filter architecture have changed. For details, see “Changes to
Discrete FIR Filter HDL Optimized serial filter parameters” on page 5-9.

HDL code generation support for programmable coefficients with
frame-based Discrete FIR Filter block (requires HDL Coder for code
generation)
The Discrete FIR Filter block now supports specifying coefficients from an input port when you use
frame-based input.

dsp.MatrixViewer System object
The new dsp.MatrixViewer System object visualizes matrices by mapping matrix values to a color
spectrum. You can customize the axes, labels, color scheme, and scope appearance by setting
Name,Value pairs.

In the scope, zooming and panning buttons appear when you hover over the image:

•
 Cursor measurements – Drag the cursor to see the x, y, and matrix value of individual data

points. To customize the label of the cursor data, use the setCursorDataLabels object function.
•

 Fit to view – After zooming or panning, select the fit to view button to see the full matrix
image.

•
 Zooming – Zoom in or out by selecting the magnifying glass button or by scrolling with your

mouse.

5-7

https://www.mathworks.com/help/releases/R2019a/dsp/ref/discretefirfilterhdloptimized.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.hdlfirfilter-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/discretefirfilterhdloptimized.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.hdlfirfilter-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.matrixviewer-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.matrixviewer.setcursordatalabels.html

•
 Panning – Pan around the image by selecting the hand button or by clicking and dragging the

matrix image.

DSP System Toolbox Support Packages for ARM Cortex -A and ARM
Cortex -M Processors will be removed
Starting in R2019a, the DSP System Toolbox Support Package for ARM® Cortex®-A Processors and
DSP System Toolbox Support Package for ARM Cortex-M Processors will no longer be available for
download. This functionality has been moved to Embedded Coder Support Package for ARM Cortex-A
Processors and Embedded Coder Support Package for ARM Cortex-M Processors, respectively. For
more details on installing and getting started with these support packages, see Setup and
Configuration (Embedded Coder Support Package for ARM Cortex-A Processors) and Setup and
Configuration (Embedded Coder Support Package for ARM Cortex-M Processors).

Functionality being removed or changed
Certain System objects will be removed
Warns

Starting in R2019a, using the following System objects throws a warning message. These objects will
be removed in a future release. Use the equivalent replacements instead.

System object Use This Instead
dsp.CepstralToLPC No replacement
dsp.LPCToAutocorrelation poly2ac
dsp.LPCToCepstral No replacement
dsp.LPCToLSF poly2lsf
dsp.LPCToLSP cos(poly2lsf)
dsp.LPCToRC poly2rc
dsp.LSFToLPC lsf2poly
dsp.LSPToLPC No replacement
dsp.RCToAutocorrelation rc2ac
dsp.RCToLPC rc2poly
dsp.BurgAREstimator arburg
dsp.BurgSpectrumEstimator pburg
dsp.DCT dct
dsp.IDCT idct
dsp.Normalizer normalize, vecnorm
dsp.ParametricEQFilter designParamEQ from Audio Toolbox

For more details, see the Compatibility Considerations sections in the System object reference
pages.

Parametric EQ Filter block has been removed

R2019a

5-8

https://www.mathworks.com/help/releases/R2019a/supportpkg/armcortexa/setup-and-configuration.html
https://www.mathworks.com/help/releases/R2019a/supportpkg/armcortexa/setup-and-configuration.html
https://www.mathworks.com/help/releases/R2019a/supportpkg/armcortexm/setup-and-configuration.html
https://www.mathworks.com/help/releases/R2019a/supportpkg/armcortexm/setup-and-configuration.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.cepstraltolpc-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.lpctoautocorrelation-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/poly2ac.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.lpctocepstral-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.lpctolsf-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/poly2lsf.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.lpctolsp-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/poly2lsf.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.lpctorc-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/poly2rc.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.lsftolpc-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/lsf2poly.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.lsptolpc-system-object.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.rctoautocorrelation-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rc2ac.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.rctolpc-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rc2poly.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.burgarestimator-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/arburg.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.burgspectrumestimator-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/pburg.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.dct-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/dct.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.idct-system-object.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/idct.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.normalizer-system-object.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/double.normalize.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/vecnorm.html
https://www.mathworks.com/help/releases/R2019a/dsp/ref/dsp.parametriceqfilter-system-object.html

The Parametric EQ Filter block has been removed. For new models, use the Parametric EQ Filter
block from Audio Toolbox instead.

Compatibility Considerations
Existing models using this block continue to run.

Changes to Discrete FIR Filter HDL Optimized serial filter parameters
Behavior change

Prior to R2019a, you specified the serial implementation by setting a requirement for input timing.
Now, you can specify the serialization requirement based on either input timing or resource usage.

For a filter with L coefficients, the block implements a serial filter with not more than M multipliers
and requires input samples that are at least N cycles apart, such that L = N×M.

Serial Filter Requirement Configuration Prior to
R2019a

Configuration in R2019a

Specify a serialization rule
based on input timing, that is, N
cycles.

• Set Filter structure to
Direct form systolic.

• Select Share DSP
resources.

• Set Sharing factor to N.

• Set the Filter structure to
Partly serial
systolic.

• Set Specify serialization
factor as to Minimum
number of cycles
between valid input
samples.

• Set Number of cycles to N.
Specify a serialization rule
based on resource usage, that
is, M multipliers.

Serialization by resource usage
is not supported prior to
R2019a. However, you can
calculate N based on your
multiplier requirement.

• Set Filter structure to
Direct form systolic.

• Select Share DSP
resources.

• Set Sharing factor to
ceil(NumCoeffs/M).

• Set the Filter structure to
Partly serial
systolic.

• Set Specify serialization
factor as to Maximum
number of multipliers.

• Set Number of multipliers
to M.

5-9

R2018b

Version: 9.7

New Features

Bug Fixes

Compatibility Considerations

6

Dataflow: Accelerate your model using multi-threading and derive
frame sizes automatically for multirate signal processing in Simulink
Using a dataflow domain, you can model and simulate a computationally intensive signal processing
or multirate signal processing system. Dataflow domains simulate using computation synchronous
dataflow, which is data-driven and statically scheduled. Simulation of dataflow domains in Normal and
Accelerator modes leverages the multicore CPU architecture of the host computer. It automatically
partitions your model and simulates the subsystem using multiple threads. The software can also
automatically calculate the frame sizes needed for each block in a frame-based signal processing
system, and insert buffers where needed.

For more information, see Dataflow Domain.

Programmatic Interface for Spectrum Analyzer Measurements:
Configure measurements programmatically and obtain numerical
results for further processing or analysis
The following properties configure measurement data programmatically for the
dsp.SpectrumAnalyzer System object and the Spectrum Analyzer block:

• MeasurementChannel
• PeakFinder
• CursorMeasurements
• ChannelMeasurements
• DistortionMeasurements
• CCDFMeasurements

For the Spectrum Analyzer block, these properties belong to the Spectrum Analyzer
Configuration object. To configure measurements for the block, select the Spectrum Analyzer
block in the Simulink model, create a Spectrum Analyzer Configuration object for the selected
block in the MATLAB command prompt, and edit the measurement properties.

% Select the Spectrum Analyzer block in your Simulink model
% and run the following:
cfg = get_param(gcb,'ScopeConfiguration');
cfg.ChannelMeasurements.Enable = true;
cfg.ChannelMeasurements.PercentOccupiedBW = 95;
cfg.Visible = true;

Using the getMeasurementData function, you can obtain the measurement data programmatically
for the dsp.SpectrumAnalyzer System object and the Spectrum Analyzer block.

Dynamic Filter Visualization: Visualize the magnitude response of
time-varying digital filters
Using the dsp.DynamicFilterVisualizer object, you can now visualize the magnitude response
of time-varying digital filters or time-varying filter coefficients. Consider an example where the
CenterFrequency property of the dsp.VariableBandwidthFIRFilter System object changes
with time, there by changing the magnitude response of the filter. You can view this time-varying
magnitude response using the dsp.DynamicFilterVisualizer object.

R2018b

6-2

https://www.mathworks.com/help/releases/R2018b/dsp/ug/dataflow-domains.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.spectrumanalyzer-system-object.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/spbscopes.spectrumanalyzerconfiguration.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/spbscopes.spectrumanalyzerconfiguration.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.spectrumanalyzer-system-object.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.dynamicfiltervisualizer.html

% Create a dsp.DynamicFilterVisualizer object.
dfv = dsp.DynamicFilterVisualizer('YLimits', [-120 10]);

% Define a bandpass variable bandwidth FIR filter.
Fs = 44100;
vbw = dsp.VariableBandwidthFIRFilter('FilterType','Bandpass',...
 'FilterOrder',100,...
 'SampleRate',Fs,...
 'CenterFrequency',5e3,...
 'Bandwidth',4e3);

% Visualize the filter response as the CenterFrequency property
% changes.
for idx = 1:100
 dfv(vbw);
 vbw.CenterFrequency = vbw.CenterFrequency + 20;
end

Optimized Multistage Multirate Filters: Design multistage decimation
and interpolation FIR filters based on requirements for response and
implementation cost
Design optimal multistage decimation and interpolation FIR filters using the
designMultistageDecimator and designMultistageInterpolator functions, respectively.
You can design a filter with the lowest possible number of filter coefficients and multiplications per
input sample by setting the 'MinTotalCoeffs', 'NumStages', and 'CostMethod' arguments.

Sample Range for Audio File Reader: Stream signals only from a
defined interval within audio files when using the
dsp.AudioFileReader System object
You can specify a range of samples to stream from an audio file using the ReadRange property in
dsp.AudioFileReader System object. When you run this object, the audio file reader streams data
only from the interval defined by ReadRange.

Faster Channelizer and Channel Synthesizer: Simulate polyphase FFT
filters faster by leveraging additional parallel optimizations
Simulation speed has improved for the following System objects and blocks:

• dsp.Channelizer and dsp.ChannelSynthesizer System objects.
• Channelizer and Channel Synthesizer blocks.

The simulation speed improves for the blocks only when the Simulate using parameter in each
block is set to Interpreted execution.

Peek Functionality in dsp.AsyncBuffer System object
The peek function outputs unread samples in the async buffer without changing the number of
unread samples in the buffer.

6-3

https://www.mathworks.com/help/releases/R2018b/dsp/ref/designmultistagedecimator.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/designmultistageinterpolator.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.audiofilereader-system-object.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.channelizer-system-object.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.channelsynthesizer-system-object.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/channelizer.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/channelsynthesizer.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.asyncbuffer.peekasyncbuffer.html

Consider an async buffer that contains a column vector of 100 samples, [1:100]'. Peek at the first
three samples using the peek function. The output is [1;2;3]. After peeking, read the first 50
samples using the read function. The output is [1:50]'. This shows that the peek function has not
changed the number of unread samples. Now peek again at the first three samples. Now, the output
is [51;52;53]. Read 50 samples again. The output now contains the sequence [51:100], and the
NumUnreadSamples is set to 0.

Q = dsp.AsyncBuffer;
signal = (1:100).';
write(Q,signal);
out1 = peek(Q,3); % out1 = [1; 2; 3];
out2 = read(Q,50); % out2 = (1:50).';
out3 = peek(Q,3); % out3 = [51; 52; 53];
out4 = read(Q); % out4 = (51:100).';

dsp.AudioFileReader System object supports http streams
The dsp.AudioFileReader System object can now read data from an http web address, such as
'http://audio.wgbh.org:8000/'.

Improved Logic Analyzer performance for multichannel signals
When you use the Logic Analyzer to visualize signals with over 100 channels, the Logic Analyzer is
now up to 80% faster. If you expand the signal to view individual channels, you may experience a
short loading time as you scroll through the channels.

HDL code generation support for complex input signals or complex
coefficients of frame-based Discrete FIR Filter and FIR Decimation
blocks (requires HDL Coder for code generation)
You can generate HDL code from a frame-based filter that uses either complex input signals and real
coefficients or complex coefficients and real input signals. See the "Frame-Based Input Support"
sections of Discrete FIR Filter and FIR Decimation.

Discrete FIR Filter HDL Optimized: Select transposed architecture,
optimize symmetric and antisymmetric coefficients, and enable reset
port (requires HDL Coder for code generation)
The Discrete FIR Filter HDL Optimized block now provides:

• Option to select a direct form transposed architecture.
• Optimization of symmetric and antisymmetric coefficients when you select Direct form

systolic (without Share DSP resources enabled) or select Direct form transposed. This
optimization reduces the number of multipliers and makes efficient use of FPGA DSP resources.

• Optional reset input port to provide a local synchronous reset of the data path registers. By
default the block connects the global HDL reset to only the control path registers. The reset
parameters are not supported when you select Share DSP resources.

These features are also available on the dsp.HDLFIRFilter System object.

R2018b

6-4

https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.audiofilereader-system-object.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/logicanalyzer.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2018b/hdlcoder/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/discretefirfilterhdloptimized.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.hdlfirfilter-system-object.html

Compatibility Considerations
Starting in R2018b:

• The validIn port is mandatory. The Enable valid input port parameter is no longer available.
• The ready port is enabled when you select Share DSP resources and disabled when you clear

Share DSP resources. The Enable ready output port parameter is no longer available.
• When you select Direct form systolic without Share DSP resources enabled, the block

implements an improved fully-parallel architecture compared to previous releases. This
architecture may have different latency than previous versions. Use the validOut signal to align
with parallel delay paths. When using this architecture, the default global HDL reset now clears
only the control path registers. Previous releases connected the global HDL reset to the data path
registers and the control path registers. This change improves hardware performance and lowers
the resources used. To implement the same fully parallel architecture as previous releases, select
Share DSP resources and set Sharing factor to 1.

• When you select Direct form systolic, select Share DSP resources, and use any Sharing
factor, the implemented filter has the same latency and uses the same hardware resources as in
previous releases. The reset behavior for this architecture is also the same as previous releases.

Functionality being removed or changed
Vector Scope block has been removed

The Vector Scope block has been removed. When you open a model in R2018b or later, any Vector
Scope blocks are automatically replaced with one of these blocks:

• Time Scope — Visualize time domain signals
• Spectrum Analyzer — Visualize frequency domain signals
• Array Plot — Visualize other input domain signals.

Compatibility Considerations
For visualizing frequency data, you may need to add a MATLAB Function block to perform a
fftshift. For an example, see Transform Time-Domain Data into Frequency Domain.

Certain linear prediction System objects will be removed
Still runs

The following System objects will be removed in a future release. Use the equivalent functions from
Signal Processing Toolbox™ instead.

System object Equivalent function
dsp.CepstralToLPC No replacement
dsp.LPCToAutocorrelation poly2ac
dsp.LPCToCepstral No replacement
dsp.LPCToLSF poly2lsf
dsp.LPCToLSP cos(poly2lsf)

6-5

https://www.mathworks.com/help/releases/R2018b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/arrayplot.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/matlabfunction.html
https://www.mathworks.com/help/releases/R2018b/matlab/ref/fftshift.html
https://www.mathworks.com/help/releases/R2018b/dsp/ug/transform-time-domain-data-into-the-frequency-domain-using-the-fft-block.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.cepstraltolpc-system-object.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.lpctoautocorrelation-system-object.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/poly2ac.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.lpctocepstral-system-object.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.lpctolsf-system-object.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/poly2lsf.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.lpctolsp-system-object.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/poly2lsf.html

System object Equivalent function
dsp.LPCToRC poly2rc
dsp.LSFToLPC lsf2poly
dsp.LSPToLPC No replacement
dsp.RCToAutocorrelation rc2ac
dsp.RCToLPC rc2poly

For more details, see the Compatibility Considerations sections in the System object reference
pages.

Cell array support removed for dsp.AllpassFilter coefficients
Errors

The following properties of the dsp.AllpassFilter System object have been removed in R2018b:

• LatticeCoefficients
• AllpassCoefficients
• WDFCoefficients

Use an N-by-1 or N-by-2 numeric array instead. For details, see the Compatibility Considerations
section of the dsp.AllpassFilter System object.

R2018b

6-6

https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.lpctorc-system-object.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/poly2rc.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.lsftolpc-system-object.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/lsf2poly.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.lsptolpc-system-object.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.rctoautocorrelation-system-object.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/rc2ac.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.rctolpc-system-object.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/rc2poly.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.allpassfilter-system-object.html
https://www.mathworks.com/help/releases/R2018b/dsp/ref/dsp.allpassfilter-system-object.html

R2018a

Version: 9.6

New Features

Bug Fixes

Compatibility Considerations

7

Frequency Input Mode for Spectrum Analyzer: Display, measure, and
analyze frequency-domain signals in MATLAB and Simulink
Use the Spectrum Analyzer to visualize and analyze frequency signals. In MATLAB, use the
dsp.SpectrumAnalyzer System object with the InputDomain property set to 'Frequency'. In
Simulink, use the Spectrum Analyzer block and set the Input Domain to Frequency.

Efficiency-Optimized Digital Filters: Simulate select digital filters
faster in MATLAB and Simulink by leveraging additional parallel
optimizations
Simulation speed has improved for the following System objects and blocks:

• dsp.FIRRateConverter, dsp.FarrowRateConverter, dsp.LMSFilter System objects.
• FIR Rate Conversion and LMS Filter blocks.

Complex Bandpass Decimation: Extract a frequency subband using a
one-sided (complex) bandpass decimator in MATLAB and Simulink
Extract a subband of frequencies from an input signal using the dsp.ComplexBandpassDecimator
System object in MATLAB and Complex Bandpass Decimator block in Simulink.

Frequency-Domain Adaptive Filter Block: Simulate adaptive FIR filters
requiring a large number of taps
Simulate FIR adaptive filters having a long impulse response using the Frequency-Domain Adaptive
Filter block in Simulink. In partitioned mode, the latency of the filter decreases by an amount
commensurate with the partitioned block length, rather than the entire impulse response length.

Bit-Natural HDL-Optimized FFT: Return data in bit-natural order from
frame-based FFT/IFFT (Requires an HDL Coder license for code
generation)
You can now select bit-natural output order, with any input order, when using the frame-based mode
of the HDL-optimized FFT and IFFT. Before R2018a, input and output data were required to be in
opposite orders. The orders of the input and output data are no longer restricted. This feature is
added to these blocks and System objects:

• FFT HDL Optimized
• IFFT HDL Optimized
• dsp.HDLFFT
• dsp.HDLIFFT

R2018a

7-2

https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.spectrumanalyzer-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.firrateconverter-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.farrowrateconverter-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.lmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/firrateconversion.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/lmsfilter.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.complexbandpassdecimator-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/complexbandpassdecimator.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/frequencydomainadaptivefilter.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/frequencydomainadaptivefilter.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlfft-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlifft-system-object.html

Compatibility Considerations
Before R2018a, the output order of the Channelizer HDL Optimized block was bit-reversed when you
set Output vector size to Same as input size. The output order is now bit-natural for both
output sizes. This change also affects the dsp.HDLChannelizer System object.

New partitioned modes in dsp.FrequencyDomainAdaptiveFilter
System object
Two new partitioned modes – Partitioned constrained FDAF and Partitioned
unconstrained FDAF – have been added to the dsp.FrequencyDomainAdaptiveFilter System
object. In these modes, filter latency decreases by an amount commensurate with the partitioned
impulse response length.

Obtain section and output word lengths and fraction lengths for
dsp.CICDecimator and dsp.CICInterpolator System objects
Using the getFixedPointInfo function, you can now obtain the word lengths and fraction lengths
of the fixed-point sections and the output for the CIC filter System objects, dsp.CICDecimator and
dsp.CICInterpolator.

Updated info method for dsp.CICDecimator and dsp.CICInterpolator
System objects
When dsp.CICDecimator and dsp.CICInterpolator objects are locked in fixed-point
configuration, the info method in 'long' format shows the word lengths and fraction lengths of the
fixed-point filter sections and the filter output.

Specify coefficients directly in FIR halfband interpolator and
decimator
When you set the filter specification to Coefficients, you can specify the FIR halfband filter
coefficients directly in dsp.FIRHalfbandDecimator and dsp.FIRHalfbandInterpolator
System objects in MATLAB and in FIR Halfband Decimator and FIR Halfband Interpolator blocks in
Simulink. The coefficients you specify must comply with the FIR halfband filter format.

Frequency-Domain FIR Filter: Specify numerator in frequency domain
When you set the numerator domain of the frequency-domain FIR filter to Frequency, you can
specify the frequency response of the filter directly. For details, see the
dsp.FrequencyDomainFIRFilter System object and Frequency-Domain FIR Filter block.

7-3

https://www.mathworks.com/help/releases/R2018a/dsp/ref/channelizerhdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlchannelizer-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.frequencydomainadaptivefilter-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.cicdecimator.getfixedpointinfo.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.cicdecimator-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.cicinterpolator-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.cicdecimator-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.cicinterpolator-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/info.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.firhalfbanddecimator-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.firhalfbandinterpolator-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/firhalfbanddecimator.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/firhalfbandinterpolator.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.frequencydomainfirfilter-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/frequencydomainfirfilter.html

Frequency-Domain FIR Filter: Specify coefficients from input port in
Simulink
When you select the Specify coefficients from input port or Specify frequency response from
input port parameter in the Frequency-Domain FIR Filter block, you can specify the time-domain
filter coefficients or the frequency-domain filter coefficients, respectively, through an input port.

Tunable Parameters Through Input Ports: Set values of tunable
parameters using input signals for 14 additional Simulink blocks
Specify tunable parameters through input ports for the following Simulink blocks in DSP System
Toolbox:

• Moving Average
• Moving Variance
• Moving RMS
• Moving Standard Deviation
• Hampel Filter
• Channelizer
• Channel Synthesizer
• Allpass Filter
• IIR Halfband Interpolator
• IIR Halfband Decimator
• Variable Bandwidth FIR Filter
• Variable Bandwidth IIR Filter
• Notch-Peak Filter
• Parametric EQ Filter

Logic Analyzer enhancements
• The hexadecimal display now supports larger signal values. Integer-valued signals are supported

up to 64 bits, and fixed-point signals are supported up to 128 bits.
• When displaying signed floating-point numbers, the Logic Analyzer rounds the number to four

decimal places when the whole number cannot fit in the display.

Additional pipelining of HDL-optimized Complex to Magnitude-Angle
To improve synthesized clock frequency and make better use of DSP blocks on FPGAs, the Complex to
Magnitude-Angle HDL Optimized block has additional pipelining. This change also affects the
dsp.HDLComplexToMagnitudeAngle System object.

Compatibility Considerations
The latency of the block and System object is three cycles longer than previous releases. You must
adjust the delay balancing of parallel data paths. As before, the latency is displayed on the block.

R2018a

7-4

https://www.mathworks.com/help/releases/R2018a/dsp/ref/frequencydomainfirfilter.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/movingaverage.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/movingvariance.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/movingrms.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/movingstandarddeviation.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/hampelfilter.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/channelizer.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/channelsynthesizer.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/allpassfilter.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/iirhalfbandinterpolator.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/iirhalfbanddecimator.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/variablebandwidthfirfilter.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/variablebandwidthiirfilter.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/notchpeakfilter.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/parametriceqfilter.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlcomplextomagnitudeangle-system-object.html

HDL Channelizer returns data in bit-natural order for both output
sizes

Compatibility Considerations
Before R2018a, the output order of the Channelizer HDL Optimized block was bit-reversed when you
set Output vector size to Same as input size. The output order is now bit-natural for both
output sizes. This change also affects the dsp.HDLChannelizer System object.

Variable-size signal support for dsp.VariableIntegerDelay System
object
The dsp.VariableIntegerDelay System object now supports variable-size input signals. When the
input is a variable-size signal, the number of input rows can change during run time without having
to call the release method between two calls to the algorithm. The number of channels must remain
fixed.

See Code Generation for Variable-Size Arrays for information on variable-size signals.

Code generation support for getRateChangeFactors function
The getRateChangeFactors function which returns the overall interpolation and decimation
factors of the rate converter in dsp.FarrowRateConverter and dsp.SampleRateConverter
System objects now supports C and C++ code generation.

Binary File Reader: Binary file no longer required to exist before code
generation
The dsp.BinaryFileReader object and Binary File Reader block no longer require the binary file
to exist before generating code from the corresponding MATLAB code and the Simulink model,
respectively.

Log data from Time Scope block as timetable
When logging signals using the Time Scope block, you can log data as a timetable.

If you set the configuration parameter Dataset signal format to timetable and the scope
parameter Save format to Dataset, the data is saved as a timetable instead of a timeseries
object.

Discrete FIR Filter block supports custom state attributes for better
customization and efficiency of generated code
The Discrete FIR Filter block now supports custom state attributes to customize and generate code
more efficiently. To access or set these attributes, in the Simulink editor, select View > Model Data
Editor or press Ctrl+Shift+E. For an example, see Custom State Attributes in Discrete FIR Filter
block (Simulink).

7-5

https://www.mathworks.com/help/releases/R2018a/dsp/ref/channelizerhdloptimized.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.hdlchannelizer-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.variableintegerdelay-system-object.html
https://www.mathworks.com/help/releases/R2018a/simulink/ug/what-is-variable-size-data.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.farrowrateconverter.getratechangefactors.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.farrowrateconverter-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.samplerateconverter-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.binaryfilereader-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/binaryfilereader.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2018a/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2018a/simulink/ug/custom-state-attributes-in-discrete-fir-filter-block.html
https://www.mathworks.com/help/releases/R2018a/simulink/ug/custom-state-attributes-in-discrete-fir-filter-block.html

Functionality Being Removed
Removal of Vector Scope block

The Vector Scope block will be removed in a future release. Use one of these blocks instead:

• Time Scope — Visualize time domain signals
• Spectrum Analyzer — Visualize frequency domain signals
• Array Plot — Visualize other input domain signals.

Removal of DirectFeedthrough property in dsp.VariableFractionalDelay System object

Modifying the DirectFeedthrough property in the dsp.VariableFractionalDelay System
object errors in R2018a. This property will be removed in a future release. Remove all references to
this property from your MATLAB code. System objects will operate in direct feedthrough mode only.

Compatibility Considerations
If this property is currently set to true, no further change is required. If this property is currently set
to false, modify your code to work in direct feedthrough mode.

Removal of DirectFeedthrough property in dsp.VariableIntegerDelay System object

Modifying the DirectFeedthrough property in the dsp.VariableIntegerDelay System object
warns in R2018a. This property will be removed in a future release. Make sure you remove all
references to this property from your MATLAB code. System objects will operate in direct
feedthrough mode only.

Compatibility Considerations
If this property is currently set to true, no further change is required. If this property is currently set
to false, modify your code to work in direct feedthrough mode.

Constraints on the dimensions of InitialConditions in dsp.VariableIntegerDelay System
object

If the InitialConditions property of the dsp.VariableIntegerDelay System object is non-
scalar, the property must be a 1-by-numChans-by-MaximumDelay matrix, where numChans is the
number of input channels.

Running the following code gives an error message:

vid = dsp.VariableIntegerDelay;
vid.InitialConditions = ones(1,10);
vid(randn(100,10),1);

Error using VariableIntegerDelay/parenReference
Specifying initial conditions in this format will be removed
in a future release. Specify the initial conditions as a
1xnumChansxMaximumDelay matrix instead, where numChans is the
number of input channels.

When you change the dimensions of the initial conditions vector, the error message disappears. In
this example, vid.MaximumDelay = 100.

R2018a

7-6

https://www.mathworks.com/help/releases/R2018a/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/arrayplot.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.variablefractionaldelay-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.variableintegerdelay-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.variableintegerdelay-system-object.html

vid = dsp.VariableIntegerDelay;
vid.InitialConditions = ones(1,10,100);
vid(randn(100,10),1);

Compatibility Considerations
In your existing code, set the InitialConditions property to a scalar or a matrix of size 1-by-
numChans-by-MaximumDelay.

Functionality Removed from dsp.DigitalUpConverter and dsp.DigitalDownConverter System
objects

The following properties have been been removed from the dsp.DigitalDownConverter System
object:

• FilterSpecification
• SecondFilterCoefficients
• SecondFilterCoefficientsDataType
• CustomSecondFilterCoefficientsDataType
• ThirdFilterCoefficients
• ThirdFilterCoefficientsDataType
• CustomThirdFilterCoefficientsDataType

The following properties have been been removed from the dsp.DigitalUpConverter System
object:

• FilterSpecification
• FirstFilterCoefficients
• FirstFilterCoefficientsDataType
• CustomFirstFilterCoefficientsDataType
• SecondFilterCoefficients
• SecondFilterCoefficientsDataType
• CustomSecondFilterCoefficientsDataType

The System objects do not allow the data type of coefficients to be specified for individual stages.

Compatibility Considerations
If these properties are currently set in your existing MATLAB code, modify your code to remove
instances of these properties.

Functionality Removed from dsp.Delay System object
Setting delay 'Units' to 'Frames' is no longer supported

Starting in R2018a, setting the delay 'Units' to 'Frames' errors. To resolve the error, set 'Units'
to 'Samples' and specify Length in samples instead of frames. Calculate the number of samples by
multiplying the frame delay value by the frame size.

Running the following code gives an error message:

7-7

https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.digitaldownconverter-system-object.html
https://www.mathworks.com/help/releases/R2018a/dsp/ref/dsp.digitalupconverter-system-object.html

d = dsp.Delay;
d.Units = 'Frames'
d(1)

Error using Delay/parenReference
Specifying the delay in frame units will be removed
in a future release. Set Units to 'Samples' and
specify Length in samples instead by multiplying
the frame delay value by the frame size.

Initial conditions are not supported in a cell array format

The InitialConditions vector no longer supports cell array format. Specify the initial conditions
as a Length-by-numChans matrix instead, where numChans is the number of input channels.

Running the following code gives an error message:

d = dsp.Delay;
d.InitialConditionsPerChannel = true;
d.InitialConditionsPerSample = true;
d.InitialConditions = {[1 3],5}
d(1)

Error using Delay/parenReference
Support for cell-array initial conditions will
be removed in a future release. Specify the
initial conditions as a Length-by-numChans matrix
instead, where numChans is the number of input channels.

The InitialConditionsPerChannel and InitialConditionsPerSample properties must be set to the same
option

The InitialConditionsPerChannel and InitialConditionsPerSample properties must both
be set to either true or false.

Removal of 'linphase' option in firlpnorm

The 'linphase' option is no longer available in the firlpnorm function.

R2018a

7-8

https://www.mathworks.com/help/releases/R2018a/dsp/ref/firlpnorm.html

R2017b

Version: 9.5

New Features

Bug Fixes

Compatibility Considerations

8

Improved Spectrum Analyzer: Analyze signals in the frequency
domain using polyphase FFT filter banks, custom windows, dBFS
units, and a spectral mask panel
Spectrum Analyzer blocks and dsp.SpectrumAnalyzer System objects have been improved.

• Analyze frequency signals using a polyphase FFT filter bank spectral estimation. The filter bank
method has a lower noise floor and better frequency resolution. Filter bank also requires fewer
samples per update compared to the Welch method. To use filter bank estimation in the Spectrum
Analyzer block, in the Spectrum Setting panel, set Method to Filter Bank. For the System
object, use dsp.SpectrumAnalyzer('Method','Filter Bank').

Two new properties allow you to control the spectral estimation method and the filter bank
estimation:

• Method – Choose the spectral estimation method.
• NumTapsPerBand – Specify the number of taps per frequency band.

• Save the spectrum data plotted in the Spectrum Analyzer using two new functions:

• getSpectrumData - Save the spectrum or spectrogram displayed in the Spectrum Analyzer
along with simulation time, frequency vector, min hold, and max hold.

• isNewDataReady – Check if spectrum is updated to avoid saving duplicate data.
• Window your spectral analysis with two new Window options: Blackman-Harris and Custom.

For more information, see Window and CustomWindow.
• Analyze spectrum data in dBFS. When using dBFS SpectrumUnits, you can customize the full

scale with the new properties FullScale and FullScaleSource.
• Customize axis scaling at the command line with the AxesScaling property for auto scaling and

the ColorLimits and YLimits properties for hard-coded limits.
• Within the Spectrum Analyzer window, set up spectral masks and monitor how often the mask

fails. In the toolbar, select the button to show the spectral mask settings and statistics panel.

Zoom FFT: Compute fast Fourier transform (FFT) of a frequency
subband at high resolution
Analyze a subband of frequencies at a high resolution using the zoom FFT algorithm in the
dsp.ZoomFFT System object and Zoom FFT block.

Frequency-Domain FIR Filter: Convolve long sequences while
balancing latency and execution efficiency
Using the dsp.FrequencyDomainFIRFilter System object and the Frequency-Domain FIR Filter
block, you can filter a streaming input signal using FFT based filtering methods. To mitigate the
latency for a long filter, you can partition the impulse response into shorter blocks, and apply the
filtering on these blocks.

R2017b

8-2

https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.spectrumanalyzer-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.spectrumanalyzer.getspectrumdata.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.spectrumanalyzer.isnewdataready.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.spectrumanalyzer-system-object.html#bthj29x-1.mw_5b2d3686-876d-4343-9ad9-b31ded5dbc63
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.spectrumanalyzer-system-object.html#bthj29x-1.mw_f001eeab-ef8b-460c-a9ea-a6bc94773255
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.spectrumanalyzer-system-object.html#d119e281227
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.spectrumanalyzer-system-object.html#mw_1a5199a3-5eb2-45f5-b7d1-87e755aa970c
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.spectrumanalyzer-system-object.html#d119e283702
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.spectrumanalyzer-system-object.html#bthj29x-1.mw_85eb0424-b07d-4731-bbe4-fd2b33502a43
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.spectrumanalyzer-system-object.html#bthj29x-1.mw_851bcc47-d5b6-4298-8c4b-662ef211d499
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.zoomfft-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/zoomfft.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.frequencydomainfirfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/frequencydomainfirfilter.html

Multitap Fractional Delay: Delay signals by multiple sample period
values concurrently using variable fractional delay
Concurrently delay signals by multiple fractional delay values using the
dsp.VariableFractionalDelay System object and the Variable Fractional Delay block.

Minimum Resource FFT/IFFT: Reduce resource usage with the Burst
Radix 2 architecture of the HDL Optimized FFT (requires HDL Coder
for code generation)
You can now choose a minimum resource architecture for the HDL-optimized FFT blocks and System
objects. To use this feature, select the Burst Radix 2 architecture in these blocks and System
objects:

• FFT HDL Optimized
• IFFT HDL Optimized
• dsp.HDLFFT
• dsp.HDLIFFT

Logic Analyzer Improvements: Triggers and bus signal names
• In the Logic Analyzer and dsp.LogicAnalyzer, you can now use triggers to display signal data

when certain conditions are met. Once you attach a signal to a trigger, you can trigger on:

• Rising or falling edges
• Bit pattern matching
• Less than or greater than a value
• Equal to a value

• If you log a bus signal in the Logic Analyzer, you can now view the bus element names. In the
Logic Analyzer Settings window, select Display bus element names.

Enhancements to the dsp.Channelizer System object
You can now compute and visualize the frequency response of an individual or a combination of the
filters in the dsp.Channelizer System object, using the freqz and the fvtool functions. You can
also obtain the band edge frequencies and the center frequencies of the bandpass filters in the
channelizer using the bandedgeFrequencies and the centerFrequencies functions. The
getFilters function returns a matrix of filter coefficients, with each row containing the coefficients
of the corresponding bandpass filter.

Automatic Port Creation: Add inports to scope blocks when routing
signals
For Spectrum Analyzer and Array Plot blocks in Simulink models, dragging a line to connect another
signal to the scope automatically adds a new input port. For an example, see Build and Edit a Model
in the Simulink Editor (Simulink).

8-3

https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.variablefractionaldelay-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/variablefractionaldelay.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.hdlfft-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.hdlifft-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/logicanalyzer.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.logicanalyzer-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/logicanalyzer.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.channelizer.freqzchannelizer.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.channelizer.fvtoolchannelizer.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.channelizer.bandedgefrequencies.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.channelizer.centerfrequencies.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.channelizer.getfilters.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/build-a-simple-model.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/build-a-simple-model.html

Improvements to interactive legend in scope blocks
For scope blocks and System objects, use the scope legend to toggle signal visibility. In the scope
legend, click a signal name to hide the signal in the scope. To show the signal, click the signal name
again. To show only one signal, right-click the signal name, which hides all other signals.

Array Plot Improvements: Support for scalar and variable-size inputs,
axis scaling at the command line
For Array Plot blocks and dsp.ArrayPlot system objects, you can now:

• Visualize scalar or variable-sized input signals. If the signal is variable sized, the number of
channels (columns) cannot change.

• Customize array plot axis scaling at the command line with the AxesScaling property.

dsp.BlockLMSFilter System object supports code generation
Generate C and C++ code from MATLAB code that contains the dsp.BlockLMSFilter System
object using the MATLAB Coder.

Functionality being removed
Removal of Overlap-Add FFT Filter block and Overlap-Save FFT Filter block

Overlap-Add FFT Filter and Overlap-Save FFT Filter blocks have been replaced with the Frequency-
Domain FIR Filter block. Existing instances of these blocks continue to run. For new models, use the
Frequency-Domain FIR Filter block instead.

Removal of sample-based processing mode from the DSP System Toolbox System objects

The FrameBasedProcessing property of all DSP System objects has been removed. All the System
objects listed now only work in frame-based processing mode. See What Is Frame-Based Processing?
for more information.

• dsp.AllpoleFilter
• dsp.AnalyticSignal
• dsp.BiquadFilter
• dsp.Buffer
• dsp.CumulativeProduct
• dsp.CumulativeSum
• dsp.Delay
• dsp.FIRFilter
• dsp.IIRFilter
• dsp.MatFileReader
• dsp.MatFileWriter
• dsp.Maximum
• dsp.Mean

R2017b

8-4

https://www.mathworks.com/help/releases/R2017b/dsp/ref/arrayplot.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.arrayplot-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.blocklmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/frequencydomainfirfilter.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/frequencydomainfirfilter.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/frequencydomainfirfilter.html
https://www.mathworks.com/help/releases/R2017b/dsp/ug/sample-and-frame-based-concepts.html#bso3re7

• dsp.Minimum
• dsp.PeakToPeak
• dsp.PeakToRMS
• dsp.PhaseUnwrapper
• dsp.RMS
• dsp.SignalSink
• dsp.StandardDeviation
• dsp.VariableFractionalDelay
• dsp.VariableIntegerDelay
• dsp.Variance
• dsp.ZeroCrossingDetector

Compatibility Considerations
In existing code, if this property is set to true, no further change to the input is required. If this
property is set to false and the input is a column vector or an N-D array, reshape the input such that
each column in the input is an independent channel.

Removal of adaptfilt objects

All adaptfilt objects have been removed. Use the corresponding System object instead.

adaptfilt Object Replacement System Object
adaptfilt.lms

adaptfilt.nlms

adaptfilt.se

adaptfilt.sd

adaptfilt.ss

dsp.LMSFilter

adaptfilt.blms dsp.BlockLMSFilter
adaptfilt.rls

adaptfilt.qrdrls

adaptfilt.swrls

adaptfilt.hrls

adaptfilt.hswrls

dsp.RLSFilter

adaptfilt.ftf

adaptfilt.swftf

dsp.FastTransversalFilter

8-5

https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.lmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.blocklmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.rlsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.fasttransversalfilter-system-object.html

adaptfilt Object Replacement System Object
adaptfilt.ap

adaptfilt.apru

adaptfilt.bap

dsp.AffineProjectionFilter

adaptfilt.gal

adaptfilt.lsl

adaptfilt.qrdlsl

dsp.AdaptiveLatticeFilter

adaptfilt.filtxlms dsp.FilteredXLMSFilter
adaptfilt.fdaf

adaptfilt.ufdaf

dsp.FrequencyDomainAdaptiveFilter

adaptfilt.blmsfft dsp.LMSFilter, dsp.BlockLMSFilter,
dsp.RLSFilter,
dsp.FastTransversalFilter,
dsp.AffineProjectionFilter,
dsp.AdaptiveLatticeFilter,
dsp.FilteredXLMSFilter,
dsp.FrequencyDomainAdaptiveFilter

adaptfilt.adjlms

adaptfilt.dlms

dsp.LMSFilter, dsp.BlockLMSFilter,
dsp.RLSFilter,
dsp.FastTransversalFilter,
dsp.AffineProjectionFilter,
dsp.AdaptiveLatticeFilter,
dsp.FilteredXLMSFilter,
dsp.FrequencyDomainAdaptiveFilter

adaptfilt.pbfdaf

adaptfilt.pbufdaf

dsp.LMSFilter, dsp.BlockLMSFilter,
dsp.RLSFilter,
dsp.FastTransversalFilter,
dsp.AffineProjectionFilter,
dsp.AdaptiveLatticeFilter,
dsp.FilteredXLMSFilter,
dsp.FrequencyDomainAdaptiveFilter

adaptfilt.tdafdct

adaptfilt.tfafdft

dsp.LMSFilter, dsp.BlockLMSFilter,
dsp.RLSFilter,
dsp.FastTransversalFilter,
dsp.AffineProjectionFilter,
dsp.AdaptiveLatticeFilter,
dsp.FilteredXLMSFilter,
dsp.FrequencyDomainAdaptiveFilter

Removal of qfft and qformat functions

The functions qfft and qformat have been removed. Use the dsp.FFT System object instead.

R2017b

8-6

https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.affineprojectionfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.adaptivelatticefilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.filteredxlmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.frequencydomainadaptivefilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.lmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.blocklmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.rlsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.fasttransversalfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.affineprojectionfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.adaptivelatticefilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.filteredxlmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.frequencydomainadaptivefilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.lmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.blocklmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.rlsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.fasttransversalfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.affineprojectionfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.adaptivelatticefilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.filteredxlmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.frequencydomainadaptivefilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.lmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.blocklmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.rlsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.fasttransversalfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.affineprojectionfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.adaptivelatticefilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.filteredxlmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.frequencydomainadaptivefilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.lmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.blocklmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.rlsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.fasttransversalfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.affineprojectionfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.adaptivelatticefilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.filteredxlmsfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.frequencydomainadaptivefilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/dsp.fft-system-object.html

Removal of HDL Minimum Resource FFT block

The HDL Minimum Resource FFT block will be removed in a future release. In R2017b, the HDL
Minimum Resource FFT block returns a warning. Use the Burst Radix 2 architecture of the FFT
HDL Optimized block instead. This block is in the Transforms (dspxfrm3) library.

Removal of Streaming Radix 2 architecture in HDL-optimized FFT blocks and System
objects

The Streaming Radix 2 architecture has been removed from HDL-optimized FFT blocks and
System objects for this release. Use the Streaming Radix 2^2 architecture instead, which results
in better hardware performance.

When you open a model containing an FFT HDL Optimized or IFFT HDL Optimized block that uses
the Streaming Radix 2 architecture, the block is automatically converted to use the Streaming
Radix 2^2 architecture. This change affects the latency of the block, so you must adjust the delay
balancing of parallel data paths. The new latency is displayed on the block.

dsp.HDLFFT and dsp.HDLIFFT System objects that use the Streaming Radix 2 architecture now
return errors.

8-7

https://www.mathworks.com/help/releases/R2017b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2017b/dsp/ref/ffthdloptimized.html

R2017a

Version: 9.4

New Features

Bug Fixes

Compatibility Considerations

9

Improved Spectrum Analyzer: Analyze signals in the frequency
domain using additional units, dual visualization, and mask
compliance output
Signal analysis with the Spectrum Analyzer block and System object has been improved:

• Visualize your signal spectrum as the root-mean squares (RMS) by using Type > RMS. When you
select RMS as your spectrum type, you can choose from two spectrum units Vrms and dBV.
Previously, these units were called power units.

• View the signal spectrum and spectrogram at the same time with the View setting. Use the Axes
layout setting to set the dual view mode orientation: vertically stacked or side by side. You can
also still view the spectrum and spectrogram individually.

• When you add a spectral mask, see when the spectrum values are inside or outside the limits.
When the spectrum is inside the limits, the mask is green. When the spectrum is outside the
limits, the mask is red.

Also, you can get statistics about what percentage of time the spectral mask passed or failed using
the getSpectralMaskStatus function or the status bar tooltip.

• On the Distortion Measurements pane, measure up to 99 harmonics using the Num.
Harmonics option.

For more information, see the dsp.SpectrumAnalyzer System object or the Spectrum Analyzer
block.

Compatibility Considerations
Changed System Object Properties

Pre-R2017a Functionality Use Instead Considerations
PowerUnits SpectrumUnits The property has been renamed.

Update any existing code with
the new property name.

SpectrumType =
'Spectrogram'

ViewType = 'Spectrogram' The property value
Spectrogram is now a view
type. Update any existing code
with the new property name.

Unified interface for dsp.LogicAnalyzer: Visualize, measure, and
analyze signal transitions in MATLAB using the same interface as the
Simulink Logic Analyzer
The dsp.LogicAnalyzer System object has improved runtime and interaction performance,
memory usage, and a unified interface with the Simulink Logic Analyzer.

Compatibility Considerations
The DisplayChannelColor property now supports customizable colors. String specifications
continue to be supported and are converted to [R G B] values.

R2017a

9-2

https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.spectrumanalyzer.getspectralmaskstatus.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.spectrumanalyzer-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.logicanalyzer-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/logicanalyzer-app.html

The default DisplayChannelFormat property is now 'auto'.

The DisplayChannelHeight and DisplayChannelSpacing properties are now defined in terms
of pixels.

The ReduceUpdates and MaxNumTimeSteps properties are no longer used and will be removed in a
future release.

Channelizer and Channel Synthesizer Blocks: Analyze and synthesize
narrow subbands of a broadband signal using a polyphase FFT filter
bank in Simulink
The Channelizer block implements an analysis filter bank that splits a broadband input signal into
multiple narrowband signals. The Channel Synthesizer block merges multiple narrowband signals to
form a single broadband signal. These filter banks are implemented using an FFT based polyphase
structure.

Asynchronous Buffering: Exchange signals at different rates and array
sizes with the dsp.AsyncBuffer System object
You can write and read data from a FIFO buffer at different rates and frame sizes using the
dsp.AsyncBuffer System object. The data that you write occupies the next available empty space
in the buffer. After the last space in the buffer is used, the object overwrites the oldest data. The
buffer does not erase the data when the object reads it, so you can reread data from the past (overlap
reading).

HDL Optimized Filters: Model and generate optimized hardware
implementations for FIR filters and polyphase filter banks (requires
HDL Coder for code generation)
Discrete FIR Filter

This Discrete FIR Filter HDL Optimized block and dsp.HDLFIRFilter System object model FIR
filter structures optimized for HDL code generation with HDL Coder. The filter is sample-based and
includes control signals for flow control. Resource sharing options allow for tradeoffs between
throughput and resource utilization. The block and object provide cycle-accurate models of the
generated HDL code.

Polyphase Filter Bank

The Channelizer HDL Optimized block and dsp.HDLChannelizer System object model a polyphase
filter bank and fast Fourier transform and support HDL code generation with HDL Coder. The
algorithm provides an efficient hardware implementation and hardware-friendly control signals. You
can achieve giga-sample-per-second (GSPS) throughput using vector input.

Frame Input Support for FIR Decimation

You can now generate HDL code from the FIR Decimation block when using frame input. The block
accepts a column vector of input data, where each element of the vector represents a sample in time.
The coder implements a parallel HDL architecture for the filter. This capability increases throughput
in hardware designs. To configure the block for frame input:

9-3

https://www.mathworks.com/help/releases/R2017a/dsp/ref/channelizer.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/channelsynthesizer.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.asyncbuffer-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/discretefirfilterhdloptimized.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.hdlfirfilter-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/channelizerhdloptimized.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.hdlchannelizer-class.html

1 Connect a column vector signal to the FIR Decimation block input port.
2 Set Input processing to Columns as channels (frame based).
3 Set Rate options to Enforce single-rate processing.
4 Right-click the block and select HDL Code > HDL Block Properties. Set the Architecture to

Frame Based. The block implements a parallel HDL architecture. See Frame-Based Architecture
(HDL Coder).

To generate HDL code, you must have an HDL Coder license. For information on HDL support for this
block, see FIR Decimation.

Remove outliers from streaming signals in MATLAB and Simulink using
Hampel filter
The dsp.HampelFilter System object in MATLAB and the Hampel Filter block in Simulink remove
outliers from streaming signals by using the Hampel identifier.

Spectral estimation using filter bank in Simulink
To estimate the spectrum of a streaming signal in Simulink by using an analysis filter bank, set the
Method parameter of the Spectrum Estimator block to Filter bank. For a given signal length, the
filter bank approach of spectral estimation provides lower spectral leakage, higher frequency
resolution, and a more accurate noise floor compared to the Welch's method.

Tunable UDP port number in generated code
The following System object properties and block parameters are now tunable in C/C++ generated
code:

• LocalIPPort property in dsp.UDPReceiver System object.
• RemoteIPPort property in dsp.UDPSender System object.
• Local IP port parameter in UDP Receive block.
• Remote IP port parameter in UDP Send block.

These properties and parameters are not tunable during simulation. They are tunable only when you
execute the generated code.

Filter signals using the dsp.FilterCascade System object
You can filter streaming signals with a cascade of filters using the step method of the
dsp.FilterCascade System object. For a list of System objects that can be used as stages of the
filter cascade, at the MATLAB command prompt, enter
dsp.FilterCascade.helpSupportedSystemObjects.

Use delay and scalar gain in dsp.FilterCascade System object
You can now use the dsp.Delay System object and a numeric scalar value as stages in the
dsp.FilterCascade System object.

R2017a

9-4

https://www.mathworks.com/help/releases/R2017a/hdlcoder/ug/configuring-hdl-filter-architectures.html#bvd5s3h
https://www.mathworks.com/help/releases/R2017a/hdlcoder/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.hampelfilter-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/hampelfilter.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/spectrumestimator.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.udpreceiver-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.udpsender-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/udpreceive.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/udpsend.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.filtercascade-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.delay-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.filtercascade-class.html

Cascade a dsp.FilterCascade System object
The dsp.FilterCascade System object can now cascade another dsp.FilterCascade System
object.

For example:

cicdecim = dsp.CICDecimator('DecimationFactor', 6, ...
 'NumSections', 6);
decimcasc = dsp.FilterCascade(cicdecim, 1/gain(cicdecim));
ciccomp = dsp.CICCompensationDecimator;
filtchain = dsp.FilterCascade(decimcasc, ciccomp)

filtchain =

 dsp.FilterCascade with properties:

 Stage1: [1×1 dsp.FilterCascade]
 Stage2: [1×1 dsp.CICCompensationDecimator]

Access the complete history of LMS filter weights in MATLAB
When you set the WeightsOutput property of the dsp.LMSFilter System object to 'All', the
object outputs a FrameLength-by-Length matrix of weights. FrameLength is the frame size of the
input. Length is the length of the LMS filter. This matrix of weights corresponds to the full sample-by-
sample history of weights values for all FrameLength samples of the input values.

Tab Completion: Complete parameter names and options in DSP
System Toolbox System objects
When creating DSP System Toolbox System objects, you can use the Tab key to complete parameter
names and options. For example, if you type dsp.FIRFilter(' and press Tab, MATLAB displays a
list of possible parameter names and options for the dsp.FIRFilter object.

Completion of parameters and options is not available for DSP System Toolbox functions.

Filter Builder and fdesign support IIR halfband filter System objects
The Filter Builder app and the fdesign function now support the dsp.IIRHalfbandDecimator
and dsp.IIRHalfbandInterpolator System objects.

For example:

• Filter Builder — When you choose the filter response as Halfband, select the Impulse
response as IIR, and set Filter Type to either Decimator or Interpolator, the
filterBuilder designs a dsp.IIRHalfbandDecimator and
dsp.IIRHalfbandInterpolator System objects, respectively.

• fdesign — 'SystemObject' flag set to true is supported in the design method of
fdesign.decimator, fdesign.interpolator, fdesign.halfband, and fdesign.nyquist
objects while designing an IIR halfband decimator or interpolator filter.
Fs = 2000; % Sampling frequency of input signal
M = 2; % Decimation factor
TW = 100; % Transition width of filter to be designed, 100 Hz

9-5

https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.lmsfilter-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.iirhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.iirhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/fdesign.html

Ast = 60; % Stopband attenuation of filter to be designed, 80 db
% Store decimator design specs
f = fdesign.decimator(2,'halfband','TW,Ast',TW,Ast,Fs);
iirhalfbanddecim = design(f,'iirlinphase','FilterStructure','iirdecim',...
'SystemObject',true)

iirhalfbanddecim =

 dsp.IIRHalfbandDecimator with properties:

 Specification: 'Coefficients'
 Structure: 'Minimum multiplier'
 HasPureDelayBranch: true
 Delay: 14
 AllpassCoefficients2: [7×2 double]
 HasTrailingFirstOrderSection: false

Specify image file icons for MATLAB System block
You can specify a MATLAB System block icon as an image file using a new option in the MATLAB
Editor. While editing your System object, specify the image file by selecting System Block > Add
Image Icon. After specifying the image file, this code is added to the System object class:

function icon = getIconImpl(~)
 % Define icon for System block
 icon = matlab.system.display.Icon('image.png');
end

For more information, see Customize System Block Appearance.

Change tunable System object properties before locking
For independent tunable properties, you can now change the value at any time.

If the tunable property has a dependent datatype property, you must lock the object before changing
the property.

Support for Time Scope to For Each subsystems
You can place a Time Scope block within a For Each subsystem block. The scope follows the same
behavior as the Display block. For example, within a For Each subsystem, the Time Scope block
displays only the last iteration of the For Each subsystem.

Copy scope to clipboard
To share the output of a signal simulation, copy the scope graphic to your clipboard by selecting File
> Copy to Clipboard. The scope colors are converted to a print-friendly coloring. See Share Scope
Image (Simulink).

Interactive legend for scopes
If you show a legend on your scope block or System object, you can use the legend to filter which
signals are shown. Left-clicking a signal in the legend hides all other signals in the scope. Right-
clicking a signal in the legend toggles whether the scope shows or hides the signal.

R2017a

9-6

https://www.mathworks.com/help/releases/R2017a/simulink/ug/customize-system-block-appearance.html
https://www.mathworks.com/help/releases/R2017a/simulink/ug/scope-block-tasks.html#bvoa9s4
https://www.mathworks.com/help/releases/R2017a/simulink/ug/scope-block-tasks.html#bvoa9s4

Stem plot option for Time Scope block
In the Time Scope block, you can visualize your signal as a stem plot. From the View > Style menu,
select Plot type > Stem.

Time Scope Block: Connect nonvirtual bus and array of buses signals
You can connect nonvirtual bus signals and array of buses signals to a Time Scope block. To display
the signals in the Time Scope block, use the normal or accelerator simulation mode. For details, see
Nonvirtual Bus and Array of Buses Signals and Save Simulation Data Using a Scope Block.

Frame-based processing changes
As part of the changes in how DSP System Toolbox handles frame-based processing, certain block
options have been removed and certain function options error. The following sections provide more
detailed information about the specific R2017a DSP System Toolbox software changes for frame-
based processing:

• “Input processing parameter set to Inherited” on page 9-7
• “InputProcessing property set to Inherited errors” on page 9-8
• “Rate options parameter set to Inherit from input” on page 9-8
• “Find the histogram over parameter set to Inherited” on page 9-9
• “Running difference parameter set to Inherit from input” on page 9-9
• “Save 2-D signals as parameter set to Inherit from input” on page 9-9
• “Treat Mx1 and unoriented sample-based signals as parameter removed” on page 9-9
• “Sample-based processing parameter removed” on page 9-9

Input processing parameter set to Inherited

The Inherited option has been removed from the Input processing parameter of the following
blocks:

• Biquad Filter
• Arbitrary Response Filter — To see the change, select Use basic elements to enable filter

customization.
• Bandpass Filter — To see the change, select Use basic elements to enable filter

customization.
• Bandstop Filter — To see the change, select Use basic elements to enable filter

customization.
• CIC Filter — To see the change, select Use basic elements to enable filter customization.
• Comb Filter — To see the change, select Use basic elements to enable filter customization.
• Hilbert Filter — To see the change, select Use basic elements to enable filter customization.
• Inverse Sinc Filter — To see the change, select Use basic elements to enable filter

customization.
• Nyquist Filter — To see the change, select Use basic elements to enable filter customization.
• Octave Filter — To see the change, select Use basic elements to enable filter customization.

9-7

https://www.mathworks.com/help/releases/R2017a/simulink/ug/scope-block-tasks.html#bvkf4to
https://www.mathworks.com/help/releases/R2017a/simulink/ug/scope-block-tasks.html#bu55s2j-1
https://www.mathworks.com/help/releases/R2017a/dsp/ref/biquadfilter.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/arbitraryresponsefilter.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/bandpassfilter.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/bandstopfilter.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/cicfilter.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/combfilter.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/hilbertfilter.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/inversesincfilter.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/nyquistfilter.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/octavefilter.html

• Digital Filter Design — To see the change, select Use basic elements to enable filter
customization.

• CIC Interpolation
• Downsample
• Upsample
• Repeat
• Variable Fractional Delay
• Mean — To see the change, select Running mean.
• Variance — To see the change, select Running variance.
• RMS — To see the change, select Running RMS.
• Standard Deviation — To see the change, select Running standard deviation.
• Minimum — To see the change, set Mode to Running.
• Maximum — To see the change, set Mode to Running.
• Cumulative Sum
• Cumulative Product
• Edge Detector
• Zero Crossing
• Unwrap

Compatibility Considerations
Blocks using the Inherited option in models created in previous releases can no longer use this
option in R2017a. When you open these models in R2017a, the block chooses Columns as
channels (frame based).

InputProcessing property set to Inherited errors

Setting Input processing property to Inherited now causes an error in these functions:

• block
• realizemdl

It is recommended that you set this property to one these options:

• 'columnsaschannels' — Treat each column of the input signal as an independent channel.
• 'elementsaschannels' — Treat each element of the input signal as an independent channel.

Rate options parameter set to Inherit from input

The Inherit from input option has been removed from the Rate options parameter of the CIC
Decimation block when the input to the block is a scalar.

Compatibility Considerations
If the Rate options parameter in the existing model is set to Inherit from input, the model
errors in R2017a. It is recommended that you update this parameter to either Allow multirate
processing or Enforce single-rate processing.

R2017a

9-8

https://www.mathworks.com/help/releases/R2017a/dsp/ref/digitalfilterdesign.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/cicinterpolation.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/downsample.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/upsample.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/repeat.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/variablefractionaldelay.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/mean.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/variance.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/rms.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/standarddeviation.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/minimum.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/maximum.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/cumulativesum.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/cumulativeproduct.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/edgedetector.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/zerocrossing.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/unwrap.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/block.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/realizemdl.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/cicdecimation.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/cicdecimation.html

For information on which Rate options parameter to choose, see Rate options parameter set to
Inherit from input under Frame-based processing in the R2015a DSP System Toolbox release notes.

Find the histogram over parameter set to Inherited

The Inherited option has been removed from the Find the histogram over parameter of the
Histogram block.

Compatibility Considerations
In existing models, Histogram blocks using the Inherited option can no longer use this option in
R2017a. When you open these models in R2017a, the block chooses Each column.

Running difference parameter set to Inherit from input

The Inherit from input option has been removed from the Running difference parameter of
the Difference block.

Compatibility Considerations
In existing models, Difference blocks using the Inherit from input option can no longer use this
option in R2017a. When you open these models in R2017a, the block chooses No.

Save 2-D signals as parameter set to Inherit from input

The Inherit from input option has been removed from the Save 2-D signals as parameter of
the Triggered To Workspace block.

Compatibility Considerations
Triggered To Workspace blocks using the Inherit from input option in existing models can no
longer use this option in R2017a. When you open these models in R2017a, the block chooses 2-D
array (concatenate along first dimension).

Treat Mx1 and unoriented sample-based signals as parameter removed

The Treat Mx1 and unoriented sample-based signals as parameter has been removed from these
blocks:

• Buffer
• Delay Line

Compatibility Considerations
In existing models, Buffer and Delay Line blocks using the Treat Mx1 and unoriented sample-
based signals as parameter can no longer use this parameter in R2017a. The blocks treat these
inputs as single channels.

Sample-based processing parameter removed

The Sample-based processing parameter has been removed from the Unbuffer block.

9-9

https://www.mathworks.com/help/releases/R2017a/dsp/ref/histogram.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/difference.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/triggeredtoworkspace.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/buffer.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/delayline.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/unbuffer.html

Compatibility Considerations
In existing models, Unbuffer blocks using the Sample-based processing parameter can no longer
use this parameter in R2017a. The block automatically unbuffers an M-by-N matrix input into a 1-by-
N output vector.

Functionality being removed
• “Running Mode in Statistics Objects and Blocks” on page 9-10
• “Audio device recorder and player objects” on page 9-10
• “Radix 2 architecture of HDL-optimized FFT blocks and System objects” on page 9-11

Running Mode in Statistics Objects and Blocks

The running mode in the following System objects and blocks will be removed in a future release.

System Object Use This Instead
dsp.Maximum dsp.MovingMaximum
dsp.Minimum dsp.MovingMinimum
dsp.Mean dsp.MovingAverage
dsp.RMS dsp.MovingRMS
dsp.StandardDeviation dsp.MovingStandardDeviation
dsp.Variance dsp.MovingVariance

Blocks Use This Instead
Maximum Moving Maximum
Minimum Moving Minimum
Mean Moving Average
RMS Moving RMS
Standard Deviation Moving Standard Deviation
Variance Moving Variance

Audio device recorder and player objects

The following DSP features warn in R2017a and will be removed in a future release.

System object Use This Instead
dsp.AudioRecorder audioDeviceReader object in Audio Toolbox.

Note The ability to select or change the audio
driver through the DSP System Toolbox
preferences dialog box has been removed. You
can specify the driver in the
audioDeviceReader object by using the
Driver property.

R2017a

9-10

https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.maximum-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.movingmaximum-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.minimum-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.movingminimum-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.mean-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.movingaverage-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.rms-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.movingrms-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.standarddeviation-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.movingstandarddeviation-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.variance-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.movingvariance-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/maximum.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/movingmaximum.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/minimum.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/movingminimum.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/mean.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/movingaverage.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/rms.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/movingrms.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/standarddeviation.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/movingstandarddeviation.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/variance.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/movingvariance.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.audiorecorder-class.html

System object Use This Instead
dsp.AudioPlayer audioDeviceWriter object.

Note The ability to select or change the audio
driver through the DSP System Toolbox
preferences dialog box is removed. You can
specify the driver in the audioDeviceWriter
object by using the Driver property.

Compatibility Considerations
Existing instances of these System objects continue to run. For new instances of the functionality, use
the replacement feature.

Radix 2 architecture of HDL-optimized FFT blocks and System objects

The Radix 2 architecture, used in the FFT HDL Optimized and IFFT HDL Optimized blocks, and in
the dsp.HDLFFT and dsp.HDLIFFT System objects, will be removed in a future release. Use of this
architecture returns a warning in R2017a. Use the Radix 2^2 architecture instead, which results in
better hardware performance.

Architecture Use This Instead
Streaming Radix 2 Streaming Radix 2^2

Compatibility Considerations
The latency of the two architectures is different. The new latency is displayed on the blocks, or can be
accessed using the getLatency method of the System object. When you change the architecture,
adjust any delay balanced paths in your model.

9-11

https://www.mathworks.com/help/releases/R2017a/dsp/ref/dsp.audioplayer-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/audiodevicewriter-class.html
https://www.mathworks.com/help/releases/R2017a/dsp/ref/audiodevicewriter-class.html

R2016b

Version: 9.3

New Features

Bug Fixes

Compatibility Considerations

10

Logic Analyzer: Visualize, measure, and analyze transitions and states
over time for Simulink signals
The Logic Analyzer visualization tool enables you to view the transitions of signals. You can use the
Logic Analyzer to:

• Debug and analyze models.
• Trace and correlate many signals simultaneously.
• Detect and analyze timing violations.
• Trace system execution.

See Inspect and Measure Transitions Using the Logic Analyzer to explore some of its key
functionality.

Spectral Mask: Compare a signal spectrum to a spectral mask using
Spectrum Analyzer
The Spectrum Analyzer block and SpectrumAnalyzer System object support defining and
overlaying a spectral mask on spectrum plots. Spectral masks are useful for verifying that the signal
spectrum is within an area of defined spectral limitations.

Channelizer and Channel Synthesizer: Analyze and synthesize narrow
subbands of a broadband signal using a polyphase FFT filter bank
The dsp.Channelizer System object implements an analysis filter bank that splits a broadband
input signal into multiple narrowband signals. The dsp.ChannelSynthesizer System object
merges multiple narrowband signals to form a single broadband signal. These filter banks are
implemented using an FFT based polyphase structure.

Moving Statistics: Measure descriptive statistics on streaming signals
in MATLAB and Simulink
Compute moving statistics such as the average, RMS, standard deviation, variance, minimum,
maximum, and median of a streaming input signal in MATLAB code and Simulink models.

Gigasample per Second (GSPS) Signal Processing: Increase the
throughput of HDL code generated from Discrete FIR Filter and
Integer Delay blocks using frame input
You can now generate HDL code from the Discrete FIR Filter block when using frame input. First set
Input processing to Columns as channels (frame based). Then right-click the block, open
HDL Code > HDL Block Properties, and set the Architecture to Frame Based. The block accepts
vector input data, where each element of the vector represents a sample in time. The coder
implements a parallel HDL architecture for the filter. For information on HDL support for this block,
see Discrete FIR Filter.

The Delay block also supports HDL code generation with frame input data. Set Input processing to
Columns as channels (frame based). The block accepts vector input data, where each element
of the vector represents a sample in time.

R2016b

10-2

https://www.mathworks.com/help/releases/R2016b/dsp/ref/logicanalyzer-app.html
https://www.mathworks.com/help/releases/R2016b/dsp/ug/logic-analyzer-walkthrough.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.arrayplot-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.channelizer-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.channelsynthesizer-class.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ref/discretefirfilter.html

This capability increases throughput in hardware designs. To generate HDL code, you must have an
HDL Coder license.

Stream signals to and from binary files
You can now read and write binary files in the MATLAB environment using the
dsp.BinaryFileReader and dsp.BinaryFileWriter System objects. In the Simulink
environment, you can use the corresponding Binary File Reader and Binary File Writer blocks. The
reader can read any binary file and does not depend on how a binary file is created.

Compute LMS adaptive filter weights using LMS Update block
LMS Update block estimates adaptive filter weights using an LMS adaptive algorithm. The block
accepts the data and error as inputs and computes the filter weights based on the specified LMS
algorithm. Using this block, you can model and simulate variants of LMS adaptive filtering algorithm,
including the filtered-X LMS.

Allpass Filter block
The Allpass Filter block filters each channel of a streaming input signal using a single-section or a
multiple-section allpass filter in Simulink. You can implement the allpass filter in minimum multiplier,
wave digital filter, or lattice form.

Specify coefficients in Farrow Rate Converter block and System object
You can now specify the coefficients of Farrow rate converters directly. To specify the coefficients, set
the Specification property of the dsp.FarrowRateConverter System object to Coefficients.
In the Farrow Rate Converter block, set the Specification method parameter to Coefficients.

Spectral estimation using filter banks
To estimate the spectrum of a signal using an analysis filter bank, set the Method property of the
dsp.SpectrumEstimator System object to 'Filter bank'. The filter bank approach provides low
spectral leakage, high frequency resolution, and an accurate noise floor.

High-throughput polyphase filter bank for HDL example
The Generate HDL Code for High Throughput Signal Processing model example shows how to design
a polyphase filter bank to achieve gigasample per second data rates in the generated HDL
implementation. The model uses the FFT HDL Optimized block with vector input.

Bit-reversed input order for HDL-optimized FFT
For vector input data, the HDL-optimized FFT algorithms now support bit-reversed input with natural
order output. For scalar input data, you can select any input order with any output order. The default
is natural order input with bit-reversed output.

This change affects these blocks and System objects:

10-3

https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.binaryfilereader-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.binaryfilewriter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/binaryfilereader.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/binaryfilewriter.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/lmsupdate.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/allpassfilter.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.farrowrateconverter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/farrowrateconverter.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.spectrumestimator-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/examples/generate-hdl-code-for-high-throughput-signal-processing.html

• FFT HDL Optimized
• IFFT HDL Optimized
• dsp.HDLFFT
• dsp.HDLIFFT

HDL code generation for reset port on Discrete FIR Filter
You can now generate HDL code from the Discrete FIR Filter block when you configure the block to
have an external reset port.

Compiler support for System object scopes
You can now compile MATLAB code containing calls to dsp.ArrayPlot, dsp.SpectrumAnalyzer,
or dsp.TimeScope System objects by using the mcc MATLAB compiler command. You use compiled
MATLAB code to create a standalone application.

Custom X-axis data in Array Plot
You can now customize X-axis data in the Array Plot block and dsp.ArrayPlot System object. Use
this option to specify the axis for arbitrarily spaced data.

Set legend strings and autoscaling programmatically in Time Scope
In the dsp.TimeScope System object, you can control the appearance of the scope from the
MATLAB command line or from within MATLAB code. Use the ChannelNames property to specify a
cell array of names to use in the plot legend. When ShowLegend is true, the legend pulls the names
from the cell array. Use the AxesScaling property to enable autoscaling of the plot. The default
scaling setting is to scale the plot when the simulation stops.

Simpler way to call System objects
Instead of using the step method to perform the operation defined by a System object, you can call
the object with arguments, as if it were a function. The step method continues to work. This feature
improves the readability of scripts and functions that use many different System objects.

For example, if you create a dsp.FFT System object named fft1024, then you call the System object
as a function with that name.

fft1024 = dsp.FFT('FFTLengthSource','Property', ...
 'FFTLength',1024);
fft1024(x)

The equivalent operation using the step method is:

fft1024 = dsp.FFT('FFTLengthSource','Property', ...
 'FFTLength',1024);
step(fft1024,x)

R2016b

10-4

https://www.mathworks.com/help/releases/R2016b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.arrayplot-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.arrayplot-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.arrayplot-class.html
https://www.mathworks.com/help/releases/R2016b/compiler/mcc.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/arrayplot.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.arrayplot-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.arrayplot-class.html

When the step method has the System object as its only argument, the function equivalent has no
arguments. You must call this function with empty parentheses. For example, step(sysobj) and
sysobj() perform equivalent operations.

System objects support for additional inputs, global variables, and
enumeration data types
• System objects in code generated using MATLAB Coder can have up to 1024 inputs.
• You can use global variables declared in System objects to exchange data with the Data Store

Memory block in Simulink. You can use these variables in generated code.
• Enumeration data types for System objects included in Simulink using the MATLAB System block

is supported. Enumerations restrict data to a finite set of data values that inherit from int8,
uint8, int16, uint16, int32, or Simulink.IntEnumType data types, or a data type you define
using Simulink.defineIntEnumType.

Functionality being removed
Removal of sample mode from the DSP System Toolbox System objects

The FrameBasedProcessing property of all DSP System objects will be removed in a future release.
System objects containing this property will then work only in frame-based processing mode. See
What Is Frame-Based Processing? for more information. If this property is set to true, no further
change to the input is required. If this property is set to false and the input is a column vector or an
N-D matrix, reshape the input such that each column in the input is an independent channel.

Effective R2016b, modifying this property throws an error for these System objects:

• dsp.AllpoleFilter
• dsp.AnalyticSignal
• dsp.BiquadFilter
• dsp.Buffer
• dsp.CumulativeProduct
• dsp.CumulativeSum
• dsp.Delay
• dsp.FIRFilter
• dsp.IIRFilter
• dsp.MatFileReader
• dsp.MatFileWriter
• dsp.Maximum
• dsp.Mean
• dsp.Minimum
• dsp.PeakToPeak
• dsp.PeakToRMS
• dsp.PhaseUnwrapper
• dsp.RMS

10-5

https://www.mathworks.com/help/releases/R2016b/simulink/slref/datastorememory.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/datastorememory.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/matlabsystem.html
https://www.mathworks.com/help/releases/R2016b/dsp/ug/sample-and-frame-based-concepts.html#bso3re7

• dsp.SignalSink
• dsp.StandardDeviation
• dsp.VariableFractionalDelay
• dsp.VariableIntegerDelay
• dsp.Variance
• dsp.ZeroCrossingDetector

Digital Filter block and System object

The dsp.DigitalFilter System object has been removed and the Digital Filter block will be
removed in a future release. The table lists the recommended replacement blocks and System
objects.

Filter to Implement Replacement Block Replacement System Object
FIR filter structures Discrete FIR Filter dsp.FIRFilter
Biquad (SOS) structures Biquad Filter dsp.BiquadFilter
Non-SOS IIR filter structures Discrete Filter dsp.IIRFilter
Allpole structures Allpole Filter dsp.AllpoleFilter

Compatibility Considerations
Existing instances of the Digital Filter block continue to run. For new models, use the replacement
block listed in the table.

Removal of adaptfilt objects

Starting in R2016b, using adaptfilt objects throws an error. In a future release, these objects will
be removed. Use the corresponding System object instead.

adaptfilt Object Replacement System Object
adaptfilt.lms

adaptfilt.nlms

adaptfilt.se

adaptfilt.sd

adaptfilt.ss

dsp.LMSFilter

adaptfilt.blms dsp.BlockLMSFilter
adaptfilt.rls

adaptfilt.qrdrls

adaptfilt.swrls

adaptfilt.hrls

adaptfilt.hswrls

dsp.RLSFilter

R2016b

10-6

https://www.mathworks.com/help/releases/R2016b/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/biquadfilter.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/discretefilter.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.iirfilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/allpolefilter.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.allpolefilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.lmsfilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.blocklmsfilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.rlsfilter-class.html

adaptfilt Object Replacement System Object
adaptfilt.ftf

adaptfilt.swftf

dsp.FastTransversalFilter

adaptfilt.ap

adaptfilt.apru

adaptfilt.bap

dsp.AffineProjectionFilter

adaptfilt.gal

adaptfilt.lsl

adaptfilt.qrdlsl

dsp.AdaptiveLatticeFilter

adaptfilt.filtxlms dsp.FilteredXLMSFilter
adaptfilt.fdaf

adaptfilt.ufdaf

dsp.FrequencyDomainAdaptiveFilter

adaptfilt.blmsfft Will be removed in a future release
adaptfilt.adjlms

adaptfilt.dlms

Will be removed in a future release

adaptfilt.pbfdaf

adaptfilt.pbufdaf

Will be removed in a future release

adaptfilt.tdafdct

adaptfilt.tfafdft

Will be removed in a future release

Cell array support removal for dsp.AllpassFilter coefficients

Cell array support for the LatticeCoefficients, AllpassCoefficients, and
WDFCoefficients properties of dsp.AllpassFilter System object will be removed in a future
release. Use an N-by-1 or N-by-2 numeric array instead.

Inherited option removed from the input processing parameter

The Inherited option has been removed from the Input processing parameter in the Analytic
Signal block.

Compatibility Considerations
In models created before R2016b that have Input processing set to Inherited, the parameter
changes to Columns as channels (frame based) if you open the model in R2016b or after. If
the block input is sample-based, nonscalar, and not a column vector, change Input processing to
Elements as channels (sample based).

Frame status parameter removed from the Check Signal Attributes block

The Frame status parameter has been removed from the Check Signal Attributes block.

10-7

https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.fasttransversalfilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.affineprojectionfilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.adaptivelatticefilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.filteredxlmsfilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.frequencydomainadaptivefilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.allpassfilter-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/analyticsignal.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/analyticsignal.html
https://www.mathworks.com/help/releases/R2016b/dsp/ref/checksignalattributes.html

qfft object errors

Starting in R2016b, using the qfft object throws an error. Use the dsp.FFT System object instead.

dspstartup removed

dspstartup has been removed. Use the DSP Simulink Model Templates instead.

R2016b

10-8

https://www.mathworks.com/help/releases/R2016b/dsp/ref/dsp.fft-class.html
https://www.mathworks.com/help/releases/R2016b/dsp/gs/configure-the-simulink-environment-for-signal-processing-models.html

R2016a

Version: 9.2

New Features

Bug Fixes

Compatibility Considerations

11

DSP Unfolding for Mac: Generate multithreaded MEX files from
MATLAB functions on Mac OS X
DSP unfolding is a technique to improve throughput through parallelization. In R2016a, dspunfold
function implements DSP unfolding on Mac OS X platform as well as Windows and Linux. The
multithreaded MEX file that dspunfold generates from the specified MATLAB function leverages the
multicore CPU architecture of the host computer, and can improve speed significantly.

Faster FIR and Biquad Filters: Run faster simulations for system
models that include FIR and biquad filters
These filters have significantly faster simulation speeds for multichannel inputs:

• dsp.FIRFilter System object and Discrete FIR Filter block in the Direct form structure
• dsp.BiquadFilter System object and Biquad Filter block in the Direct form II

transposed structure

Fixed-Point Farrow Rate Converter: Design and simulate Farrow rate
conversion filters using fixed-point data types
The dsp.FarrowRateConverter System object and Farrow Rate Converter block now support
fixed-point data types.

Gigasample per Second (GSPS) Signal Processing: Increase
throughput of HDL-optimized FFT and IFFT algorithms using frame
input
You can increase the throughput of the FFT and IFFT calculation by using vector input and output
ports. The internal algorithm computes the FFT or IFFT of each vector element in parallel.

The FFT implementation is now a Radix 2^2 architecture which improves performance for vector
input. The table compares hardware implementation resources between the old Radix 2 architecture
and the new Radix 2^2 architecture.

Architecture Multipliers Adders Memory Control Logic For
Vector Input

Radix 2 Hybrid log4(N-1)) 3×log4(N) 17N/16 – 1 Complicated
Radix 2^2 (SDF) log4(N-1) 4×log4(N) N – 1 Simple

This change affects these blocks and System objects:

• FFT HDL Optimized
• IFFT HDL Optimized
• dsp.HDLFFT
• dsp.HDLIFFT

R2016a

11-2

https://www.mathworks.com/help/releases/R2016a/dsp/ref/dspunfold.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2016a/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/biquadfilter.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.farrowrateconverter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/farrowrateconverter.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.hdlifft-class.html

HDL Optimizations for Biquad Filter: Reduce critical path or area when
generating HDL from a subsystem that includes a Biquad Filter block
The Biquad Filter block is now included in subsystem optimizations for speed and area of the
generated HDL. To specify resource sharing, streaming, and pipeline options, right-click the
subsystem containing the Biquad Filter block and open the HDL Code > HDL Properties dialog box.
To use these optimizations you must set the Architecture of the Biquad Filter block to Fully
parallel. This feature requires an HDL Coder license.

The optimizations work the same way as the optimizations for the Discrete FIR Filter block. You can
share resources between Biquad Filter and Discrete FIR Filter blocks in the same subsystem. See
Subsystem Optimizations for Filters.

Differentiate a signal using the dsp.Differentiator System object and
Differentiator block
dsp.Differentiator System object applies a direct form FIR full band differentiator filter on an
input signal. The object uses an FIR equiripple filter design to design the differentiator filter. The
Differentiator Filter block imports the functionality of this object into the Simulink environment.

Play audio data using the audioDeviceWriter System object and Audio
Device Writer block
Play audio data on your computer's audio device using the audioDeviceWriter System object and
Audio Device Writer block. Audio Toolbox provides enhanced functionality. For instance, you can
customize the channel-to-speaker mapping and monitor the dropouts in the audio data. Audio Toolbox
also adds support for low-latency ASIO drivers on Windows.

Specify coefficients in IIR Halfband Interpolator and IIR Halfband
Decimator Blocks and System objects
You can now specify the coefficients of IIR halfband filters directly. To specify the coefficients, set the
Specification property of the dsp.IIRHalfbandInterpolator and
dsp.IIRHalfbandDecimator System objects to Coefficients. In the blocks, set the Filter
specification parameter to Coefficients.

In this mode:

• You can specify the structure as Minimum multiplier or Wave Digital Filter. In both
forms, you specify the coefficients through the applicable properties.

• The coefficients in the Minimum multiplier form are tunable, that is, you can change them
even after the object is locked or during the model simulation.

• The first branch of the polyphase filter structure can be modeled as a pure delay.
• The last section of the second branch of the polyphase filter structure can contain a first-order

section.

11-3

https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/biquadfilter.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016a/hdlcoder/ug/subsystem-optimizations-for-filters.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.differentiator-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/differentiatorfilter.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/audiodevicewriter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/audiodevicewriterblock.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.iirhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.iirhalfbanddecimator-class.html

Customize the data limits of the Matrix Viewer block
You can now customize the x-axis and y-axis limits of the Matrix Viewer block. Changing the limits on
the block dialog box updates the block axes in real time.

Code generation for wave digital filter structure in dsp.AllpassFilter
System object
With the Structure property of the dsp.AllpassFilter System object set to Wave Digital
Filter, you can:

• Generate C code from the System object.
• Import this System object into Simulink using the MATLAB System block.
• Specify the last section of the filter as first order by setting the TrailingFirstOrderSection

property to true.
• Assign array data to the WDFCoefficients property.

Compatibility Considerations
Old MATLAB code with WDFCoefficients property set to a cell array continues to run in R2016a.
However, it is recommended that you set this property to an array value.

Generate coefficients for multirate filters
Design an FIR interpolator, decimator, and rate converter using the designMultirateFIR function.
To compute the coefficients of the multirate filter, this function uses an FIR Nyquist filter. Coefficients
are computed based on the rate conversion factor provided as the input to the function.

Select the color of the noise in dsp.ColoredNoise System object
In the dsp.ColoredNoise System object, you can now specify the color of the noise to generate by
setting the Color property to:

• White
• Pink
• Brown
• Blue
• Purple
• Custom

When you choose Custom, you can specify the power density of the noise through the
InverseFrequencyPower property.

Full-precision setting for product data type of Biquad Filter
You can now specify biquad filters to use full-precision rules for the product data type. In the
dsp.BiquadFilter System object, set the NumeratorProductDataType and

R2016a

11-4

https://www.mathworks.com/help/releases/R2016a/dsp/ref/matrixviewer.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.allpassfilter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/designmultiratefir.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.colorednoise-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.biquadfilter-class.html

DenominatorProductDataType properties can be set to Full precision. In the Biquad Filter
block, set the Product output parameter to Inherit via internal rule.

In the full-precision setting, the filter computes all internal arithmetic and output data types using
full-precision rules. These rules provide more accurate fixed-point numerics that prevent quantization
from occurring within the filter. Bits are added as needed so that no roundoff or overflow occurs.

Code generation for Subband Analysis and Subband Synthesis Filters
The dsp.SubbandAnalysisFilter and dsp.SubbandSynthesisFilter System objects can
generate C code. When these objects run in single precision mode, you can also generate C code
optimized for ARM Cortex-A and ARM Cortex-M processors. To generate code on ARM Cortex
processors, you must have an Embedded Coder license.

Enhancements to Variable Fractional Delay
• The Variable Fractional Delay block and dsp.VariableFractionalDelay System object accept

variable-size input signals. During the block simulation or when the object is locked, you can vary
the number of samples per channel of the input signal. However, you cannot vary the number of
channels.

• Interpolation precision has improved. To improve the prevision, set the Interpolation method is set
to FIR.

Multiple inputs for Spectrum Analyzer
The Spectrum Analyzer block and dsp.SpectrumAnalyzer System object accept more than one
input port. In the Spectrum Analyzer block, set the number of inputs by selecting File > Number of
Input Ports. For dsp.SpectrumAnalyzer, set the NumInputPorts property to the number of
ports you want. For the block and System object, all inputs must have the same frame size. For the
block only, all inputs must also have the same sample time.

Additional axes for Time Scope
The Time Scope block and dsp.TimeScope System object now default to 4 x 4 separate axes and
allow up to 16 x 16 axes. To set the axes select View > Layout. Then, drag the axes grid to the
desired number of axes and positions of those axes.

Set legend programmatically in Array Plot
In the Array Plot block and dsp.ArrayPlot System object, you can control the channel names from
the MATLAB command line or from within MATLAB code. Define the channel names in a cell array.
The plot legend pulls the names from this cell array. For the block, set the names in the
ChannelNames parameter. For the System object, set the names in the ChannelNames property.

System object property display
How System objects properties are displayed at the MATLAB command line has changed.

• Fixed-point properties are displayed only if you click a link at the end of a System object property
display.

11-5

https://www.mathworks.com/help/releases/R2016a/dsp/ref/biquadfilter.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.subbandanalysisfilter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.subbandsynthesisfilter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/variablefractionaldelay.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.variablefractionaldelay-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.spectrumanalyzer-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.timescope-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/arrayplot.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.arrayplot-class.html

• Properties are grouped as defined in the getPropertyGroupsImpl method.
• If getPropertyGroupsImpl defines multiple sections, only properties from the first section

group are displayed. To display additional properties, click the link at the end of a System object
property display. Section groups are defined using matlab.system.display.SectionGroup.
Group titles are also displayed. To omit the “Main” title for the first group of properties, in the
matlab.system.display.SectionGroup class, set TitleSource to 'Auto'.

Compatibility Considerations
The matlab.system.showFixedPointProperties and
matlab.system.hideFixedPointProperties functions have been removed. These functions
controlled the display of fixed-point properties. If your code uses either of these functions, such as in
a startup script, you now receive a warning. The System Objects Preferences panel in the MATLAB
Preferences dialog box has also been removed. This panel was another way to set the fixed-point
properties display.

System object enhancements to MATLAB System block
To implement these classes and methods for defining your own System objects, add them to your
object's class definition file.

• Fixed-point data tab — The showFiSettingsImpl method adds a Data Types tab to the MATLAB
System block dialog box. This tab includes options for fixed-point data settings.

• Model reference discrete sample time inheritance — The
allowModelReferenceDiscreteSampleTimeInheritanceImpl method lets you specify
whether a System object in a referenced model can inherit the sample time of the parent model. If
your object uses discrete sample time in its algorithm, you set this method to true to allow
inheritance.

Enhanced System Object Development with MATLAB Editor
Create System objects in the MATLAB Editor using code insertion and visualization options.

• Define your System object with options to insert properties, methods, states, inputs, and outputs.
• View and navigate the System object code with the Analyzer.
• Develop System block and preview block dialog box interactively (with Simulink only).

These coding tools are available when you open an existing System object or create a new System
object with New > System object.

R2016a

11-6

https://www.mathworks.com/help/releases/R2016a/dsp/ref/matlab.system.getpropertygroupsimpl.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/matlab.system.display.sectiongroup-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/matlab.system.showfisettingsimpl.html
https://www.mathworks.com/help/releases/R2016a/simulink/slref/matlabsystem.html
https://www.mathworks.com/help/releases/R2016a/simulink/slref/matlabsystem.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/matlab.system.allowmodelreferencediscretesampletimeinheritanceimpl.html

Functionality being removed
The following DSP features will be removed in a future release

Functions Use This Instead
fdesign.parameq fdesign.parameq function in Audio Toolbox.
fdesign.octave fdesign.octave function in Audio Toolbox.
fdesign.audioweighting fdesign.audioweighting function in Audio

Toolbox.
iirparameq designParamEQ function in Audio Toolbox.
midicallback midicallback function in Audio Toolbox.
midicontrols midicontrols function in Audio Toolbox.
midiid midiid function in Audio Toolbox.
midiread midiread function in Audio Toolbox.
midisync midisync function in Audio Toolbox.

Blocks Use This Instead
Audio Weighting Filter block Audio Weighting Filter block in Audio Toolbox.
Octave Filter block Octave Filter block in Audio Toolbox.
MIDI Controls block MIDI Controls block in Audio Toolbox.
Parametric EQ Filter block Parametric EQ Filter block in Audio Toolbox.
From Audio Device block Audio Device Reader block in Audio Toolbox.

Note The ability to select or change the audio
driver through the DSP System Toolbox
preferences dialog box is removed. You can
specify the driver in Audio Device Reader block
using the Driver parameter.

To Audio Device block Audio Device Writer block.

Note The ability to select or change the audio
driver through the DSP System Toolbox
preferences dialog box is removed. You can
specify the driver in Audio Device Writer block
using the Driver parameter.

System object Use This Instead
dsp.ParametricEQFilter multibandParametricEQ object in Audio

Toolbox.

11-7

https://www.mathworks.com/help/releases/R2016a/dsp/ref/audiodevicewriterblock.html

System object Use This Instead
dsp.AudioRecorder audioDeviceReader object in Audio Toolbox.

Note The ability to select or change the audio
driver through the DSP System Toolbox
preferences dialog box is removed. You can
specify the driver in audioDeviceReader object
using the Driver property.

dsp.AudioPlayer audioDeviceWriter object .

Note The ability to select or change the audio
driver through the DSP System Toolbox
preferences dialog box is removed. You can
specify the driver in audioDeviceWriter object
using the Driver property.

mfilt object Use One of The Following
mfilt.linearinterp • dsp.FarrowRateConverter object with

PolynomialOrder property set to 1. This
value achieves linear interpolation.

• dsp.FIRInterpolator object with
InterpolationFactor property set to 2.

• dsp.CICInterpolator object with
NumSections and InterpolationFactor
properties set to 2.

qfft object Use This Instead
qfft dsp.FFT

Compatibility Considerations
Existing instances of these functions, System objects, and blocks continue to run. For new instances
of the functionality, use the replacement feature.

R2016a

11-8

https://www.mathworks.com/help/releases/R2016a/dsp/ref/audiodevicewriter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/audiodevicewriter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.farrowrateconverter-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.cicinterpolator-class.html
https://www.mathworks.com/help/releases/R2016a/dsp/ref/dsp.fft-class.html

R2015b

Version: 9.1

New Features

Bug Fixes

Compatibility Considerations

12

DSP Unfolding: Generate a multi-threaded MEX File from a MATLAB
function
Generate a multi-threaded MEX file from a MATLAB function, using the dspunfold function. DSP
unfolding is a technique to improve throughput through parallelization. The multi-threaded MEX file
leverages the multicore CPU architecture of the host computer and can improve speed significantly.

HDL Optimizations for Discrete FIR Filter: Implement FIR filters in
hardware at higher frequencies or using fewer resources
You can now optimize speed and area of the generated HDL for the Discrete FIR Filter block. Right-
click the subsystem containing the Discrete FIR Filter block, and open the HDL Code > HDL
Properties dialog to specify resource sharing, streaming, and pipeline options. You can use these
optimizations when the Architecture is Fully parallel. This feature requires an HDL Coder
license. See Discrete FIR Filter.

Array Plot Block: Visualize array and vector data
An Array Plot block for plotting arrays and vectors has been added to the dspsnks4 library.

Additional Multirate Filters: Design Halfband, CIC compensation, and
HDL-optimized FIR rate conversion filters
Implement FIR and IIR halfband interpolator and decimator using these new design features:

• The dsp.IIRHalfbandInterpolator and dsp.IIRHalfbandDecimator System objects use
efficient polyphase IIR halfband structure to interpolate and decimate an input signal, by a factor
of two. Allpass filters, used in the polyphase branches, use elliptic or quasilinear phase design
methods. You can use these System objects to implement the synthesis portion and the analysis
portion of a two-band filter bank. For a Simulink implementation, use the IIR Halfband
Interpolator and IIR Halfband Decimator blocks

• FIR Halfband Interpolator and FIR Halfband Decimator blocks use an FIR equiripple design to
construct the halfband filter, they use an efficient polyphase implementation to filter the input.
These blocks implement the functionality of the dsp.FIRHalfbandInterpolator and
dsp.FIRHalfbandDecimator System objects.

CIC Compensation Interpolator and CIC Compensation Decimator blocks compensate for the
passband droop and wide transition region of CIC filters. These blocks implement the functionality of
the dsp.CICCompensationInterpolator and dsp.CICCompensationDecimator System
objects.

FIR Rate Conversion HDL Optimized block upsamples, filters, and downsamples a signal using an
efficient polyphase FIR structure. The block operates on one sample at a time and provides hardware
control signals to pace the flow of samples in and out of the block. The dsp.HDLFIRRateConverter
System object provides equivalent MATLAB functionality. Both the block and System object support
HDL code generation, when used with HDL Coder.

R2015b

12-2

https://www.mathworks.com/help/releases/R2015b/dsp/ref/dspunfold.html
https://www.mathworks.com/help/releases/R2015b/hdlcoder/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/arrayplot.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/iirhalfbandinterpolator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/iirhalfbandinterpolator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/iirhalfbanddecimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firhalfbandinterpolator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firhalfbanddecimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.firhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.firhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/ciccompensationinterpolator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/ciccompensationdecimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.ciccompensationinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.ciccompensationdecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firrateconversionhdloptimized.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.hdlfirrateconverter-class.html

Conversion Filter Blocks: Convert the rate of signals in Simulink
models
• The Farrow Rate Converter block uses a farrow structure to implement a polynomial-based filter

that does the sample rate conversion. This converter can handle arbitrary rate change factors
efficiently. This block implements the functionality of dsp.FarrowRateConverter System object
in Simulink.

• The Sample-Rate Converter block uses polyphase filters, which are adapted to interpolation and
decimation with an integer factor, and to fractional rate conversions with a low conversion factor.
This block implements the functionality of the dsp.SampleRateConverter System object.

Implement FIR and IIR filters in Simulink, using the Lowpass Filter and
Highpass Filter blocks
• The Lowpass Filter block designs FIR or IIR low pass filters with minimum-order or specified

order options. This block implements the functionality of the dsp.LowpassFilter System object.
• The Highpass Filter block designs FIR or IIR high pass filters with minimum-order or specified

order options. This block implements the functionality of the dsp.HighpassFilter System
object.

Estimate power spectrum and power spectral density using the
Spectrum Estimator block
The Spectrum Estimator block combines the functionality of dsp.SpectrumEstimator System
object, and the functionality included in the Spectrum Analyzer scope block, such as the ability to
specify resolution bandwidth, automatic buffering with custom overlap, max-hold and min-hold
spectra, and power units.

Automatic selection of filter coefficients for FIR Interpolation, FIR
Decimation, and FIR Rate Conversion blocks
The FIR Interpolation, FIR Decimation, and FIR Rate Conversion blocks can now choose their filter
coefficients automatically. In the block dialog box, under Coefficient source, select Auto. The block
then uses the coefficients of an FIR Nyquist filter, designed for the rate conversion factor of the block.
For more information, see the 'Choose Filter Coefficients Automatically' section in the block reference
page.

This feature is supported for HDL code generation from the FIR Interpolation and FIR Decimation
blocks. HDL code generation requires an HDL Coder license.

Visualize the frequency response of the underlying filters in the DSP
System Toolbox blocks
You can now use FVTool to visualize the frequency response of the filter in these filter blocks:

• DC Blocker
• Variable Bandwidth FIR Filter and Variable Bandwidth IIR Filter
• Notch-Peak Filter

12-3

https://www.mathworks.com/help/releases/R2015b/dsp/ref/farrowrateconverter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.farrowrateconverter-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/samplerateconverter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.samplerateconverter-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/lowpassfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.lowpassfilter-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/highpassfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.highpassfilter-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/spectrumestimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.spectrumestimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firinterpolation.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firrateconversion.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dcblocker.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/variablebandwidthfirfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/variablebandwidthiirfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/notchpeakfilter.html

• Parametric EQ Filter
• Digital Down-Converter and Digital Up-Converter
• Farrow Rate Converter
• Sample-Rate Converter
• FIR Halfband Interpolator and FIR Halfband Decimator
• IIR Halfband Interpolator and IIR Halfband Decimator
• CIC Compensation Interpolator and CIC Compensation Decimator
• Lowpass Filter and Highpass Filter

In the block dialog box, click the View Filter Response button. FVTool opens and displays the filter
frequency response, which is computed based on the block dialog box parameters. Changes made to
these parameters update the FVTool response. For more information, see the 'View Filter Response'
section in the block reference page.

Specify the window length and window overlap in Cross-Spectrum
Estimator and Discrete Transfer Function Estimator blocks
Cross-Spectrum Estimator block and Discrete Transfer Function Estimator block now accept Window
length and Window Overlap parameters. These parameters buffer the input data into overlapping
segments, enabling you to implement the Welch spectrum estimation algorithm.

Select the color of the noise in Colored Noise block
In the Colored Noise block, you can now specify the color of the noise to generate by setting the
Noise color parameter to:

• White
• Pink
• Brown
• Blue
• Purple
• Custom

When you choose Custom, you can specify the power density of the noise through the Power of
inverse frequency parameter.

New functionality added to the dsp.SpectrumEstimator System object
dsp.SpectrumEstimator System object now has these properties, which are also found in the
Spectrum Analyzer:

• PowerUnits — Units in which the dsp.SpectrumEstimator displays the power values,
specified as dBm, dBW, or Watts.

• ReferenceLoad — Reference load, in ohms, that dsp.SpectrumEstimator uses as a reference
to compute the power values.

R2015b

12-4

https://www.mathworks.com/help/releases/R2015b/dsp/ref/parametriceqfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/digitaldownconverter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/digitalupconverter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/farrowrateconverter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/samplerateconverter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firhalfbandinterpolator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firhalfbanddecimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/iirhalfbandinterpolator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/iirhalfbanddecimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/ciccompensationinterpolator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/ciccompensationdecimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/lowpassfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/highpassfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/crossspectrumestimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/discretetransferfunctionestimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/colorednoise.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.spectrumestimator-class.html

• OutputMaxHoldSpectrum — The maximum-hold spectrum at each frequency bin. To compute
this value, dsp.SpectrumEstimator keeps the maximum value of all the power spectrum
estimates.

• OutputMinHoldSpectrum — The minimum-hold spectrum at each frequency bin. To compute
this value, dsp.SpectrumEstimator keeps the minimum value of all the power spectrum
estimates.

Generate C code from dsp.AllpassFilter and import the System object
into Simulink using the MATLAB System block
When the Structure property of dsp.AllpassFilter System object is set to Minimum
multiplier or Lattice, you can:

• Generate C code from the System object.
• Import this System object into Simulink using MATLAB System block.
• Specify the last section of the filter as first order by setting the TrailingFirstOrderSection

property to true.
• Assign array data to the AllpassCoefficients and LatticeCoefficients properties.

When the Structure property is set to Wave Digital Filter, the WDFCoefficients property
accepts cell arrays only. This configuration does not support code generation and cannot interface
with the MATLAB System block.

Compatibility Considerations
Old MATLAB code with AllpassCoefficients and LatticeCoefficients properties set to a cell
array, continues to run in R2015b. However, it is recommended that you set these properties to an
array value. The option to set the Structure property to Wave Digital Filter will be removed in
a future release.

dsp.CICDecimator and dsp.CICInterpolator System objects support
single and double data types
Inputs and outputs to the dsp.CICDecimator and dsp.CICInterpolator System objects can now
be single or double data types, in addition to the fixed-point data type.

Frame-based signal logging in structure formats in Time Scope block
For frame-based, single-port signals and multiport signals, the Time Scope block now supports
logging in the Structure with Time format and Structure formats.

Scientific notation in Time Scope
The Time Scope block and System object now uses scientific E notation in the measurement panels.
Previously they displayed SI units.

Performance improvements for FFT, IFFT and notch peak filters
Simulation speed has improved for:

12-5

https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.allpassfilter-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.cicdecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.cicinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/timescope.html

• dsp.FFT, dsp.IFFT, and dsp.NotchPeakFilter System objects.
• FFT and IFFT blocks.

Floating-point support and optional valid port for HDL-optimized NCO
The NCO HDL Optimized block and the dsp.HDLNCO System object now support floating-point
(double or single) input data for use with Fixed-Point Designer™ tools.

When a data input is fixed point, or when no data input ports are enabled, the block computes a fixed-
point output waveform based on the fixed-point parameters. When a data input is floating-point, the
block ignores the fixed-point parameters, and computes a double-precision output waveform.

The validIn port on the NCO HDL Optimized block and the validIn argument to the step method
of the dsp.HDLNCO System object are now optional. This port or argument is enabled by default.

HDL Code Generation from filterbuilder
Using Filter Design HDL Coder™, you can generate HDL code from the filter objects designed in
filterbuilder. On the Code Generation tab, click Generate HDL to set HDL code generation
options and generate code. You can generate HDL code from the following filter types:

Filter Structure System object
FIR Direct form

Direct form transposed
Direct form symmetric
Direct form antisymmetric

dsp.FIRFilter

FIR Decimator Direct form
Direct form transposed

dsp.FIRDecimator

FIR Interpolator Direct form
Direct form transposed

dsp.FIRInterpolator

IIR Direct form I
Direct form I transposed
Direct form II
Direct form II transposed

dsp.BiquadFilter

CIC Decimator dsp.CICDecimator
CIC Interpolator dsp.CICInterpolator

Simulink templates for ARM Cortex-A and ARM Cortex-M processors
Simulink model templates for ARM Cortex-A and ARM Cortex-M processors have been added to the
template gallery. These templates enable the reuse of settings, including configuration parameters for
models with optimized code generation for ARM Cortex-A or ARM Cortex-M processors. For
successful code generation, the provided model requires DSP System Toolbox Support Package for
ARM Cortex-A Processors or DSP System Toolbox Support Package for ARM Cortex-M Processors.
Instead of using the new model default canvas, select a template model to get started. The templates
create models that use best practices and previous solutions to common problems. To avoid having to
reconfigure your model for your environment or application, use a provided template or create
templates from your existing models.

R2015b

12-6

https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.fft-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.ifft-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.notchpeakfilter-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/fft.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/ifft.html

For more information, see Configure the Simulink Environment for Signal Processing Models.

ROI processing removed
The Enable ROI processing parameter has been removed from the following blocks in the
dspstat3 library. In addition, the ROIProcessing property has been removed from the
corresponding System objects.

• Maximum block and dsp.Maximum System object
• Minimum block and dsp.Minimum System object
• Mean block and dsp.Mean System object
• Standard Deviation block and dsp.StandardDeviation System object
• Variance block and dsp.Variance System object

If you have Computer Vision System Toolbox™ software installed, use the equivalent block from the
visionstatistics library. To select the rectangular region, use the Simulink Selector block.

Compatibility Considerations
Blocks in old models implementing ROI processing no longer use this functionality in R2015b. To
disable ROI processing from these models, at the MATLAB command prompt, enter
set_param(blockpath,'roiEnable','off').

Frame-based processing changes
As part of the changes in how DSP System Toolbox handles frame-based processing, certain block
options have been removed.

The following sections provide more detailed information about the specific R2015b DSP System
Toolbox software changes for frame-based processing:

• “Inherited Option Removed from the Input Processing Parameter” on page 12-7
• “Sample-Based Row Vector Processing Changes” on page 12-8
• “Blocks Emit Sample-Based Signals Only” on page 12-9

Inherited Option Removed from the Input Processing Parameter

Inherited option has been removed from the Input processing parameter in these blocks:

• FIR Interpolation
• FIR Decimation
• Two-Channel Synthesis Subband Filter
• Two-Channel Analysis Subband Filter

Compatibility Considerations
In old models that have the Input processing parameter set to Inherited, the behavior has not
changed. However, it is recommended that you update this parameter to either Columns as
channels (frame based) or Elements as channels (sample based). For information on

12-7

https://www.mathworks.com/help/releases/R2015b/dsp/gs/configure-the-simulink-environment-for-signal-processing-models.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/maximum.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.maximum-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/minimum.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.minimum-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/mean.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.mean-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/standarddeviation.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.standarddeviation-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/variance.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.variance-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firinterpolation.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/twochannelsynthesissubbandfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/twochannelanalysissubbandfilter.html

how to choose the Input processing parameter, see “Input processing parameter set to Inherited”
on page 13-8.

Sample-Based Row Vector Processing Changes

In previous releases, some of the blocks that treated sample-based row vector inputs as columns had
a Treat sample-based row input as column check box which explicitly enabled this behavior.
Other blocks automatically processed sample-based row vector inputs as column vectors.

In R2015b, these blocks now treat sample-based row vector inputs as an n channel input, where n is
the number of samples in the input signal.

• Treat sample-based row input as column check box has been removed from these blocks.

• Maximum
• Mean
• Median
• Minimum
• Normalization
• RMS
• Standard Deviation
• Variance

• These blocks no longer treat sample-based row vectors as single-channel column vectors:

• Autocorrelation
• Autocorrelation LPC
• Burg AR Estimator
• Burg Method
• Complex Cepstrum
• Convolution
• Correlation
• Covariance AR Estimator
• Covariance Method
• DCT
• FFT
• IDCT
• IFFT
• Levinson-Durbin
• LPC to LSF/LSP Conversion
• LPC to/from Cepstral Coefficients
• LPC to/from RC
• LPC/RC to Autocorrelation
• LSF/LSP to LPC Conversion
• Modified Covariance AR Estimator

R2015b

12-8

https://www.mathworks.com/help/releases/R2015b/dsp/ref/maximum.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/mean.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/median.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/minimum.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/normalization.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/rms.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/standarddeviation.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/variance.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/autocorrelation.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/autocorrelationlpc.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/burgarestimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/burgmethod.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/complexcepstrum.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/convolution.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/correlation.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/covariancearestimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/covariancemethod.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dct.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/fft.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/idct.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/ifft.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/levinsondurbin.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/lpctolsflspconversion.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/lpctofromcepstralcoefficients.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/lpctofromrc.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/lpcrctoautocorrelation.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/lsflsptolpcconversion.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/modifiedcovariancearestimator.html

• Modified Covariance Method
• Polynomial Stability Test
• Real Cepstrum
• Yule-Walker AR Estimator
• Yule-Walker Method

Compatibility Considerations
In R2015b, old models that treat sample-based row vector inputs as columns, might produce
unexpected results. To ensure consistent results, place a Math Function block, with the Function
parameter set to transpose, in front of the affected block. The Math Function block transposes the
sample-based row vector into a column vector, which is then input into the affected block.

Blocks Emit Sample-Based Signals Only

1 Source blocks: In previous releases, the following source blocks emitted frame-based signals
(double lines) when samples per frame was greater than 1 and sample-based signals (single
lines), when samples per frame was 1. In R2015b, the source blocks now emit sample-based
signals (single lines), irrespective of the value of samples per frame.

• Sine Wave
• Chirp
• From Audio Device
• Random Source
• Discrete Impulse
• NCO
• Signal From Workspace
• Triggered Signal From Workspace

2 Nonsource blocks: In previous releases, the following blocks emitted frame-based signals even
when the input was sample-based. In R2015b, these blocks emit only sample-based signals.

• Buffer
• CIC Interpolation
• Dyadic Analysis Filter Bank
• Dyadic Synthesis Filter Bank
• DWT
• IDWT
• Inverse Short-Time FFT
• Delay Line

Compatibility Considerations
Blocks emitting frames in models created in previous releases continue to emit frames in R2015b. To
update these blocks to emit samples, use Simulink Upgrade Advisor. To ensure consistent results with
a previous release, use the Frame Conversion block after the affected block.

12-9

https://www.mathworks.com/help/releases/R2015b/dsp/ref/modifiedcovariancemethod.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/polynomialstabilitytest.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/realcepstrum.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/yulewalkerarestimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/yulewalkermethod.html
https://www.mathworks.com/help/releases/R2015b/simulink/slref/mathfunction.html
https://www.mathworks.com/help/releases/R2015b/simulink/slref/mathfunction.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/sinewave.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/chirp.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/fromaudiodevice.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/randomsource.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/discreteimpulse.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/nco.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/signalfromworkspace.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/triggeredsignalfromworkspace.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/buffer.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/cicinterpolation.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dyadicanalysisfilterbank.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dyadicsynthesisfilterbank.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dwt.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/idwt.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/inverseshorttimefft.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/delayline.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/frameconversion.html

Features removed, replaced and renamed
Blocks removed and replaced

DSP Block Removed Use This Instead Backward Compatibility
Pulse Shaping Filter (with
Filter Type set to Decimator
and Pulse shape set to Raised
Cosine or Squared Root
Raised Cosine).

Raised Cosine Receive Filter in
Communications Toolbox™.

None

Old models using the Pulse
Shaping Filter block still run.

Pulse Shaping Filter (with
Filter Type set to
Interpolator and Pulse
shape set to Raised Cosine
or Squared Root Raised
Cosine).

Raised Cosine Transmit Filter in
Communications Toolbox.

None

Old models using the Pulse
Shaping Filter block still run.

DSP Block Replaced Use This Instead Backward Compatibility
CIC Compensator (with Filter
Type set to Decimator)

CIC Compensation Decimator None

Old models using the CIC
Compensator block still run.

CIC Compensator (with Filter
Type set to Interpolator)

CIC Compensation Interpolator None

Old models using the CIC
Compensator block still run.

Halfband Filter (with Impulse
response set to FIR, and Filter
Type set to Decimator)

FIR Halfband Decimator None

Old models using the Halfband
Filter block still run.

Halfband Filter (with Impulse
response set to FIR, and Filter
Type set to Interpolator)

FIR Halfband Interpolator None

Old models using the Halfband
Filter block still run.

Halfband Filter (with Impulse
response set to IIR, and Filter
Type set to Decimator)

IIR Halfband Decimator None

Old models using the Halfband
Filter block still run.

Halfband Filter (with Impulse
response set to IIR, and Filter
Type set to Interpolator)

IIR Halfband Interpolator None

Old models using the Halfband
Filter block still run.

The Lowpass Filter and Highpass Filter blocks have been modified to match the functionality and
interface of the dsp.LowpassFilter and dsp.HighpassFilter System objects.

Removal of adaptfilt objects

adaptfilt objects are removed and cause a warning message. In a future release, these objects will
be removed entirely, so you should now use the corresponding System object. See “Removal of
adaptfilt objects” on page 13-23 for a list of replacement objects.

R2015b

12-10

https://www.mathworks.com/help/releases/R2015b/comm/ref/raisedcosinereceivefilter.html
https://www.mathworks.com/help/releases/R2015b/comm/ref/raisedcosinetransmitfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/ciccompensationdecimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/ciccompensationinterpolator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firhalfbanddecimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/firhalfbandinterpolator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/iirhalfbanddecimator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/iirhalfbandinterpolator.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/lowpassfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/highpassfilter.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.lowpassfilter-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.highpassfilter-class.html

Removal of mfilt objects

mfilt objects will be removed in a future release. Instead, use their System object counterparts,
which are more powerful and support code generation.

mfilt Object Use This System object Instead
mfilt.cascade dsp.FilterCascade
mfilt.cicdecim dsp.CICDecimator
mfilt.cicinterp dsp.CICInterpolator
mfilt.farrowsrc dsp.FarrowRateConverter
mfilt.fftfirinterp dsp.FIRInterpolator (approximates

mfilt.fftfirinterp)
mfilt.firdecim dsp.FIRDecimator
mfilt.firtdecim dsp.FIRDecimator
mfilt.firinterp dsp.FIRInterpolator
mfilt.firsrc dsp.FIRRateConverter
mfilt.holdinterp dsp.CICInterpolator (with NumSections =

1, approximates mfilt.holdinterp)
mfilt.iirdecim dsp.CICInterpolator

dsp.IIRHalfbandDecimator
mfilt.iirinterp dsp.CICInterpolator

dsp.IIRHalfbandInterpolator
mfilt.iirwdfdecim dsp.IIRHalfbandDecimator (approximates

mfilt.iirwdfdecim)
mfilt.iirwdfinterp dsp.IIRHalfbandInterpolator

(approximates mfilt.iirwdfinterp)
mfilt.linearinterp dsp.CICInterpolator (with NumSections =

2, approximates mfilt.linearinterp)

System Object Propagation Mixin Methods Renamed

System object propagation mixin methods have been renamed. You use propagation methods to
control System object data specifications in Simulink. If you use an old method name, an error
occurs. You can use sobjupdate to update the following renamed methods to the new methods.

Renamed Propagation
Method

New Propagation Method

inputComplexity propagatedInputComplexity
outputComplexity propagatedOutputComplexity
inputDataType propagatedInputDataType
outputDataType propagatedOutputDataType
inputSize propagatedInputSize

12-11

https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.filtercascade-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.cicdecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.cicinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.farrowrateconverter-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.firrateconverter-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.cicinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.cicinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.cicinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.iirhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2015b/dsp/ref/dsp.cicinterpolator-class.html

Renamed Propagation
Method

New Propagation Method

outputSize propagatedOutputSize
inputFixedSize propagatedInputFixedSize
outputFixedSize propagatedOutputFixedSize

R2015b

12-12

R2015a

Version: 9.0

New Features

Bug Fixes

Compatibility Considerations

13

Audio Latency Reduction: Significantly reduce latency for audio
hardware I/O in MATLAB and Simulink
Improvements to the audio I/O infrastructure significantly reduce latency.

To determine audio latency on your system, see Measuring Audio Latency.

Filter Design Enhancements: Design high-order IIR parametric EQ
filter, variable bandwidth FIR and IIR filters, Digital Down-Converter
and Digital Up-Converter blocks
Implement FIR and IIR filters conveniently with minimal design options, using the following new filter
design features:

• iirparameq function designs IIR biquad parametric equalizer filters.
• dsp.LowpassFilter System object designs FIR or IIR lowpass filters with minimum-order or

with specified order options.
• dsp.HighpassFilter System object designs FIR or IIR highpass filters with minimum-order or

with specified order options.

Implement in Simulink several new filters, a power spectrum estimator, signal operations and
generate colored noise:

• The Variable Bandwidth FIR Filter and Variable Bandwidth IIR Filter blocks implement the
functionality of dsp.VariableBandwidthFIRFilter and
dsp.VariableBandwidthIIRFilter System objects. These blocks allow you to vary the
passband while filtering. Also, they enable you to tune the filter in a computationally efficient way
while preserving the filter structure.

• The Parametric EQ Filter block implements a parametric equalizer with tunable gain, bandwidth,
and center frequency. These filters are widely used in audio processing applications. The
Parametric EQ Filter block implements the functionality of dsp.ParametricEQFilter System
object. This block replaces the Param EQ block, found in dspfdesign library.

• The Notch-Peak Filter block implements a notching or peaking IIR filter in Simulink. Notch-Peak
filters are used in many signal processing applications, including tone removal and removal of
power line interference. With the Notch-Peak filter block, you can use tunable parameters to
control the center frequencies and 3-dB bandwidths of the notches and peaks. The Notch-Peak
Filter block implements the functionality of the dsp.NotchPeakFilter System object. This block
replaces the Peak-Notch Filter block, found in dspfdesign library.

• The Cross Spectrum Estimator block uses Welch’s modified periodogram method to compute the
cross-power spectrum of inputs. This block implements the functionality of the
dsp.CrossSpectrumEstimator System object.

• The Digital Down-Converter and Digital Up-Converter blocks provide tools to design decimation
and interpolation filters, and simplify the steps required to implement down conversion and up
conversion, in Simulink. These blocks implement the functionality of the
dsp.DigitalDownConverter and dsp.DigitalUpConverter System objects.

• The Colored Noise block generates a colored noise signal in Simulink. With this block, you can
generate noise with a 1/f α power spectral density. Set α equal to any value in the interval [-2,2].
Specifying α = 1 results in pink noise. Specifying α = 2 produces Brownian noise. This block
implements the functionality of the dsp.ColoredNoise System object.

R2015a

13-2

https://www.mathworks.com/help/releases/R2015a/dsp/examples/measuring-audio-latency.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/iirparameq.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lowpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.highpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/variablebandwidthfirfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/variablebandwidthiirfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.variablebandwidthfirfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.variablebandwidthiirfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/parametriceqfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.parametriceqfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/notchpeakfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.notchpeakfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/crossspectrumestimator.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.crossspectrumestimator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/digitaldownconverter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/digitalupconverter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.digitaldownconverter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.digitalupconverter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/colorednoise.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.colorednoise-class.html

DSP Simulink Model Templates: Configure the Simulink environment
for digital signal processing models
DSP Simulink model templates enable reuse of settings, including configuration parameters. Create
models from templates to encourage best practices and take advantage of previous solutions to
common problems. Instead of the default canvas of a new model, select a template model to help you
get started. Choose blank, basic or audio model templates to create a skeletal model using
settings recommended for DSP System Toolbox.

You can use built-in templates or create templates from models that you already configured for your
environment or application.

For more information, see Configure the Simulink Environment for Signal Processing Models.

Streaming Scope Improvements: Plot in stem mode, access log x-axis
scaling, customize sample rate, and use infinite data support
The following improvements have been made to streaming scopes:

• Legend settable programmatically in Spectrum Analyzer block and dsp.SpectrumAnalyzer
System object.

• Stem plot mode for Spectrum Analyzer block and System object.
• Log frequency axis for Spectrogram mode in Spectrum Analyzer block and System object.
• Vector-tunable frequency offset in Spectrum Analyzer block and System object.
• Custom sample rate in Spectrum Analyzer block.
• Variable-size support in Spectrum Analyzer System object.
• Infinite data support in Time Scope block.
• Log x-axis scaling in the dsp.ArrayPlot System object.

Library for HDL Supported DSP Blocks: Find all blocks that support
HDL
In the Simulink Library Browser, use the DSP System Toolbox HDL Support library to find all the
DSP System Toolbox blocks that support HDL code generation.

Alternatively, at the MATLAB command prompt, enter dsphdllib to open this library.

All blocks in this library have their parameters configured for HDL code generation. To generate HDL
code, you must have an HDL Coder license.

C Code Generation of DSP Algorithms for ARM Cortex-A and Cortex-M
processors: Generate optimized and faster performing C code using
Embedded Coder
In R2015a, using Embedded Coder, you can generate C code optimized for ARM processors using
these DSP blocks and System objects:

13-3

https://www.mathworks.com/help/releases/R2015a/dsp/gs/configure-the-simulink-environment-for-signal-processing-models.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.spectrumanalyzer-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.arrayplot-class.html

ARM Cortex-A processors

• dsp.LowpassFilter System object, with FilterType set to FIR
• dsp.HighpassFilter System object, with FilterType set to FIR
• Variable Bandwidth FIR Filter block

ARM Cortex-M processors

• dsp.LowpassFilter System object, with FilterType set to FIR or IIR
• dsp.HighpassFilter System object, with FilterType set to FIR or IIR
• dsp.VariableBandwidthIIRFilter System object, with FilterType set to Lowpass or

Highpass
• Variable Bandwidth IIR Filter block, with FilterType property set to Lowpass and Highpass
• Variable Bandwidth FIR Filter block

Performance Improvements
Simulation speed has improved for:

• dsp.FIRDecimator, dsp.AllpassFilter, and dsp.CoupledAllpassFilter System objects
• FIR Decimation and Downsample blocks

Updated Time Scope block toolbar and menus
The following Time Scope block menu and toolbar items have been added or updated:

• Zoom Out option added to Tools menu and toolbar
• Axes scaling options grouped into an Axes Scaling submenu of the Tools menu
• Scale Axes Limits option indicates axes to be scaled
• Save and Restore Axes Limits added to Axes Scaling submenu
• Warnings appear in drop-down area above the plot, instead of in a separate dialog box

Specify block filter characteristics through System objects
You can now specify the filter characteristics of FIR Decimation, FIR Interpolation, FIR Rate
Conversion, CIC Decimation, CIC Interpolation, and Biquad Filter blocks using System objects.

In the block dialog box, under Coefficient source, select Filter object . You can now specify the
name of the System object in the filter object variable. See the Specify Multirate Filter Object
section in each of these block reference pages.

Block System object to specify
FIR Decimation dsp.FIRDecimator
FIR Interpolation dsp.FIRInterpolator
FIR Rate Conversion dsp.FIRRateConverter
CIC Decimation dsp.CICDecimator

R2015a

13-4

https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lowpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.highpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/variablebandwidthfirfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lowpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.highpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.variablebandwidthiirfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/variablebandwidthiirfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/variablebandwidthfirfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.allpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.coupledallpassfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/downsample.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/firdecimation.html#btl2_mj-10
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/firinterpolation.html#buj56jl-1
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/firrateconversion.html#bt6rner-6
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firrateconverter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/cicdecimation.html#btt3z42-2
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.cicdecimator-class.html

Block System object to specify
CIC Interpolation dsp.CICInterpolator

See the Specify Discrete-Time Filter Object section in this block reference page.

Block System object to specify
Biquad Filter dsp.BiquadFilter

This feature is supported for HDL code generation from the FIR Decimation, FIR Interpolation, CIC
Decimation, CIC Interpolation, and Biquad Filter blocks. HDL code generation requires a HDL Coder
license.

Discrete Transfer Function Estimator block
You can now configure the Discrete Transfer Function Estimator block to estimate the output
coherence, or spectral coherence, of the input and output signal of the estimated transfer function.

In the dialog box, select the Output magnitude squared coherence estimate parameter to
compute the spectral coherence between the input and output signals. Spectral coherence is a useful
metric for estimating transfer functions, especially for the purposes of system identification.

Specify filter coefficients as an input to the FIR Decimation block
You can now provide filter coefficients to the FIR Decimation block. In the block dialog box, under
Coefficient Source, select Input Port. Coefficient values are tunable (can change during
simulation), while their properties must remain constant.

See the Provide Filter Coefficients through Input port section in the FIR Decimation block
reference page.

Enhanced code generation for CIC Decimation and CIC Interpolation
filter blocks
Code generated from CIC Decimation and CIC Interpolation filter blocks can now support data types
that have word lengths greater than 32 bits.

HDL support for ‘inherit via internal rule’ data type setting on FIR
Decimation and Interpolation blocks
FIR Decimation and FIR Interpolation blocks now support HDL code generation with data types
specified by Inherit via internal rule. HDL code generation requires a HDL Coder license.

Improvements for creating System objects
The following improvements have been made to creating your own System objects:

• Number of allowable code generation inputs increased to 32
• Code generation support for unbounded variable-size vectors

13-5

https://www.mathworks.com/help/releases/R2015a/dsp/ref/cicinterpolation.html#btt30aa-2
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.cicinterpolator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/biquadfilter.html#bt4ic7k-5
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/discretetransferfunctionestimator.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/firdecimation.html#btl2_mj-10
https://www.mathworks.com/help/releases/R2015a/dsp/ref/cicdecimation.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/cicinterpolation.html

• isInputSizeLockedImpl method for specifying whether the input port dimensions are locked
• matlab.system.display.Action class, used in the getPropertyGroupsImpl method, to
define a MATLAB System block button that can call a System object method

• getSimulateUsingImpl and showSimulateUsingImpl methods to set the value of the
SimulateUsing parameter and specify whether to show the SimulateUsing parameter in the
MATLAB System block

Min/Max logging instrumentation for float-to-fixed-point conversion of
DSP System objects
Convert the following DSP System Toolbox System objects to fixed-point using the Fixed-Point
Converter app (requires a Fixed-Point Designer license):

• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter (direct form transposed)
• dsp.LUFactor
• dsp.VariableFractionalDelay
• dsp.Window

Propose and apply data types for these System objects based on simulation range data. During the
conversion process, you can view simulation minimum and maximum values and proposed data types
for these System objects. You can also view whole number information and histogram data. You
cannot propose data types for these System objects based on static range data.

Provide variable-size input to the Delay System object
The dsp.Delay System object now supports variable-size input signals. When the input is a variable-
size signal, the number of input rows can change during run time without having to call release
method between two calls to the step method, while the number of channels must remain fixed.

See What Is Variable-Size Data? for information on variable-size signals .

Estimate output coherence of Transfer Function Estimator System
object
You can now use dsp.TransferFunctionEstimator System object to estimate the magnitude
squared coherence, or spectral coherence, of the input and output signals of the estimated transfer
function. To compute the spectral coherence, specify the OutputCoherence property of the System
object as true. Spectral coherence is a useful metric for estimating transfer functions, especially for
the purposes of system identification.

Specify filter coefficients as an input to the FIR Decimator System
object
Provide filter coefficients to the dsp.FIRDecimator System object as an input argument. Specify
NumeratorSource property of the System object as one of Property (default) or Input port.

R2015a

13-6

https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lufactor-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.variablefractionaldelay-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.window-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.delay-class.html
https://www.mathworks.com/help/releases/R2015a/simulink/ug/what-is-variable-size-data_br83cxa.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.transferfunctionestimator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firdecimator-class.html

When you specify Input port, the filter object requires the numerator coefficients to be specified as
the third argument at every step.

See the NumeratorSource property of dsp.FIRDecimator for details.

Bit growth to avoid overflow in HDL-optimized FFT and IFFT
When 1/N scaling is disabled, the FFT algorithm grows the internal word length by 1 bit after each
butterfly stage. This adjustment avoids overflow. This change affects the following blocks and System
objects:

• FFT HDL Optimized
• IFFT HDL Optimized
• dsp.HDLFFT
• dsp.HDLIFFT

Fixed-point support for FIR Half-band Interpolator and FIR Half-band
Decimator System objects
Implement HDL focused fixed-point operations on dsp.FIRHalfbandInterpolator and
dsp.FIRHalfbandDecimator System objects.

Updated cost method for filter System objects
The cost method for filter System objects is now a structure with the following fields:

• NumCoefficients
• NumStates
• MultiplicationsPerInputSample
• AdditionsPerInputSample

Frame-based processing
As part of general product-wide changes pertaining to Frame-Based processing, certain block options
that use the frame attribute of the input signal now cause an error.

The following sections provide more detailed information about the specific R2015a DSP System
Toolbox software changes for frame-based processing:

• “Input processing parameter set to Inherited” on page 13-8
• “Rate options parameter set to Inherit from input” on page 13-20
• “Treat Mx1 and unoriented sample-based signals as parameter set to M channels” on page 13-20
• “Save 2-D signals as parameter set to Inherit from input” on page 13-20
• “Find the histogram over parameter set to Inherited” on page 13-21
• “Sample-based processing parameter set to Pass through” on page 13-21
• “Running difference parameter set to Inherit from input” on page 13-22

13-7

https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firhalfbanddecimator-class.html

Input processing parameter set to Inherited

Setting Input processing parameter to Inherited now causes an error in these blocks:

• Biquad Filter
• FIR Interpolation
• FIR Decimation
• Edge Detector
• Analytic Signal
• Variable Integer Delay
• Variable Fractional Delay
• Zero Crossing
• Two-Channel Analysis Subband Filter
• Two-Channel Synthesis Subband Filter
• CIC Interpolation
• Upsample
• Downsample
• Repeat
• Unwrap
• Minimum, when you set Mode to Running
• Maximum, when you set Mode to Running
• Mean, when you select Running mean check box
• Standard Deviation, when you select Running standard deviation check box
• Variance, when you select Running variance check box
• RMS, when you select Running RMS check box
• Cumulative Sum, when you set Sum input along to Channels (running sum)
• Cumulative Product, when you set Multiply input along to Channels (running product)

Compatibility Considerations
To ensure consistent results for models created in previous releases, set Input processing to:

• Columns as channels (frame based), for frame-based input signals (double-line)
• Elements as channels (sample based), for sample-based input signals (single-line)

After compiling the model, frame-based signals appear as double lines. Sample-based signals appear
as single lines.

For models created in R2015a:

• To treat each column of the input signal as an independent channel, set Input processing to
Columns as channels (frame based).

• To treat each element of the input signal as an independent channel, set Input processing to
Elements as channels (sample based).

Simulink Upgrade Advisor

R2015a

13-8

https://www.mathworks.com/help/releases/R2015a/dsp/ref/biquadfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/firinterpolation.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/edgedetector.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/analyticsignal.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/variableintegerdelay.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/variablefractionaldelay.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/zerocrossing.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/twochannelanalysissubbandfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/twochannelsynthesissubbandfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/cicinterpolation.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/upsample.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/downsample.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/repeat.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/unwrap.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/minimum.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/maximum.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/mean.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/standarddeviation.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/variance.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/rms.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/cumulativesum.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/cumulativeproduct.html

If you are not sure which Input processing option applies to your model and choose Inherited
instead, use the Simulink Upgrade Advisor to update your model.

1 Update blocks in a model

In this model, the Biquad Filter block uses frame-based processing.

In the Biquad Filter dialog box, Input processing is set to Inherited.

13-9

When you run the model, Simulink issues an error message.

R2015a

13-10

From the error message, you can open the Simulink Upgrade Advisor by clicking the hyperlink.

Then you can select the Check model for block upgrade issues requiring compile
time information check and click Run this Check.

13-11

The Upgrade Advisor runs the check on all the blocks in the model, recommends an update for
the needed blocks, and gives the reason for the update.

R2015a

13-12

Click Modify to update the FrameBasedProcessing/Biquad Filter block.

Because the input signal is sample-based, in the Biquad Filter block, the Upgrade Advisor
changes Input processing to Elements as Channels (Sample based).

2 Update blocks in a custom library

When you select the Check model for block upgrade issues requiring compile
time information check box, the Upgrade Advisor does not update blocks in custom libraries.

Custom libraries are Simulink block libraries that you can create to reuse your blocks and
subsystems in one or more models. For more information, see Create Custom Block Libraries.

To analyze frame-based processing related errors in custom library blocks, open the Simulink
Upgrade Advisor and select the Check model for custom library blocks that rely
on frame status of the signal, and click Run This Check. This check does not update
the library blocks. It analyzes the blocks, recommends fixes, and gives reasons for the fixes. You
must make the fixes manually.

In this model, myBlk_Biquad is a block from the custom library. It contains a Biquad Filter block,
which is one of the blocks that causes an error when you set Input processing to Inherited.

13-13

https://www.mathworks.com/help/releases/R2015a/simulink/ug/creating-custom-block-libraries-with-matlab-function-blocks.html

R2015a

13-14

In the Biquad Filter dialog box, Input processing is set to Inherited.

13-15

When you run the model, Simulink issues an error message.

R2015a

13-16

To resolve this error message, reopen Simulink Upgrade Advisor, select the Check model for
custom library blocks that rely on frame status of the signal check and click
Run This Check.

13-17

The Upgrade Advisor runs the check on all the blocks in the custom library subsystem block,
recommends an update for the needed blocks, and gives the reason for the update.

R2015a

13-18

For the CustomLibraryModel/myBlk_Biquad/Biquad Filter block, the Upgrade Advisor
recommends changing Input Processing to either Elements as channels (sample
based) or Columns as channels (frame based). To make the change, you update the
parameter in the library block, myBlk_Biquad/Biquad Filter, not in the specific instance of
the block in the model. The model now runs successfully.

If the custom library block (in this case, myBlk_Biquad block) is used for frame-based
processing in all the models that use it, set the Input Processing parameter to Columns as
channels (frame based) in the library block. Else, set this parameter to Elements as
channels (sample based).

If the library block is used for frame-based processing in some models and sample-based
processing in others, you can add a parameter to the mask of the library block and configure this
parameter to choose one of Columns as channels (frame based) or Elements as
channels (sample based). Choosing the appropriate option in the block mask should set the
Input Processing parameter of underlying block to Columns as channels (frame based)
or Elements as channels (sample based).

Another approach is to promote the option chosen for Input Processing parameter from
underlying block (in this case, Biquad Filter block) to the mask of the library block. This is known
as parameter promotion. For details on parameter promotion, see Promote Underlying Block
Parameters to Mask.

13-19

https://www.mathworks.com/help/releases/R2015a/simulink/ug/promote-underlying-block-parameters-to-mask.html
https://www.mathworks.com/help/releases/R2015a/simulink/ug/promote-underlying-block-parameters-to-mask.html

Rate options parameter set to Inherit from input

In the CIC Decimation block, setting the Rate options parameter to Inherit from input causes
an error.

Compatibility Considerations
To ensure consistent results for models created in previous releases, set Rate options to:

• Allow multirate processing, for sample-based input signals
• Enforce single-rate processing, for frame-based input signals

For models created in R2015a:

• To run the block in single-rate mode, set Rate options to Enforce single-rate processing.
• To run the block in multirate mode, set Rate options to Allow multirate processing.

If you are not sure which option to choose, run these Simulink Upgrade Advisor checks:

• Check model for block upgrade issues requiring compile time information, for
blocks in a model

• Check model for custom library blocks that rely on frame status of the
signal, for blocks in a custom library

Treat Mx1 and unoriented sample-based signals as parameter set to M channels

Setting Treat Mx1 and unoriented sample-based signals as parameter to M channels now
causes an error in these blocks:

• Buffer
• Delay Line
• Overlap-Save FFT Filter
• Overlap-Add FFT Filter
• Short-Time FFT

Compatibility Considerations
To ensure consistent results for models created in previous releases, reshape the input to be a 1–by-M
vector, and set Treat Mx1 and unoriented sample-based signals as to One channel.

Save 2-D signals as parameter set to Inherit from input

In the Triggered To Workspace block, setting the Save 2-D signals as parameter to Inherit from
input now causes an error.

Compatibility Considerations
To ensure consistent results for models created in previous releases, set Save 2-D signals as to

• 3-D array (concatenate along third dimension), for sample-based input signals

R2015a

13-20

https://www.mathworks.com/help/releases/R2015a/dsp/ref/buffer.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/delayline.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/overlapsavefftfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/overlapaddfftfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/shorttimefft.html

• 2-D array (concatenate along first dimension), for frame-based input signals

For models created in R2015a:

• For frame-based processing, set Save 2-D signals as to 2-D array (concatenate along first
dimension).

• For sample-based processing, set Save 2-D signals as to 3-D array (concatenate along third
dimension).

If you are not sure which option to choose, run these Simulink Upgrade Advisor checks:

• Check model for block upgrade issues requiring compile time information, for
blocks in a model

• Check model for custom library blocks that rely on frame status of the
signal, for blocks in a custom library

Find the histogram over parameter set to Inherited

In the Histogram block, setting the Find the histogram over to Inherited now causes an error.

Compatibility Considerations
To ensure consistent results for models created in previous releases, set Find the histogram over
to:

• Entire input, for sample-based input signals
• Each column, for frame-based input signals

For models created in R2015a:

• To compute the histogram for each column of the input independently, set Find the histogram
over to Each column.

• To compute the histogram over the entire input, set the Find the histogram over to Entire
input.

If you are not sure which option to choose, run these Simulink Upgrade Advisor checks:

• Check model for block upgrade issues requiring compile time information, for
blocks in a model

• Check model for custom library blocks that rely on frame status of the
signal, for blocks in a custom library

Sample-based processing parameter set to Pass through

In the Unbuffer block, setting the Sample-based processing to Pass through now causes an
error.

Compatibility Considerations
Unbuffer the M-by-N matrix input into a 1-by-N output vector by setting Sample-based processing
to Same as frame based.

If you want the input to pass through, remove the Unbuffer block from the model.

13-21

Running difference parameter set to Inherit from input

In the Difference block, setting the Running difference to Inherit from input now causes an
error.

Compatibility Considerations
To ensure consistent results for models created in older releases, set Running difference to:

• No, for sample-based input signals
• Yes, for frame-based input signals

For models created in R2015a:

• To compute the difference between adjacent elements in the current input, set Running
difference to No.

• To compute the running difference across consecutive inputs, set Running difference to Yes.

If you are not sure which option to choose, run these Simulink Upgrade Advisor checks:

• Check model for block upgrade issues requiring compile time information, for
blocks in a model

• Check model for custom library blocks that rely on frame status of the
signal, for blocks in a custom library

Features removed, replaced, and duplicated
Blocks replaced, removed, and available in additional libraries

DSP Block Replaced Replaced With Backward Compatibility —
What Happens When You
Run Models Containing This
Block?

Delay Delay block in Simulink library When there is an exact match in
functionality, the Simulink Delay
block replaces the DSP Delay
block automatically.

Param EQ Parametric EQ Filter None

Old models using the Param EQ
block still run.

Peak-Notch Filter Notch-Peak Filter None

Old models using Peak-Notch
Filter block still run.

R2015a

13-22

https://www.mathworks.com/help/releases/R2015a/simulink/slref/delay.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/parametriceqfilter.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/notchpeakfilter.html

DSP Block Removed Use This Block Instead Backward Compatibility
Transpose Math Function block in Simulink

library
None

The Math Function block
replaces the Transpose block
automatically.

Complex Exponential Trigonometric Function block in
Simulink library

None

The Trigonometric Function
block replaces the Complex
Exponential block automatically.

Constant Diagonal Matrix Constant block in Simulink
library

None

The Constant block replaces the
Constant Diagonal Matrix block
automatically.

DSP Block Available in New Library
NCO and NCO HDL Optimized block Blocks are now available in dspsrcs4 library in

addition to dspsigops library.

Removal of adaptfilt objects

adaptfilt objects will be removed in a future release. Instead, use their System object counterparts,
which are more powerful and support code generation.

adaptfilt Object Use This System object Instead
adaptfilt.lms

adaptfilt.nlms

adaptfilt.se

adaptfilt.sd

adaptfilt.ss

dsp.LMSFilter

adaptfilt.blms dsp.BlockLMSFilter
adaptfilt.rls

adaptfilt.qrdrls

adaptfilt.swrls

adaptfilt.hrls

adaptfilt.hswrls

dsp.RLSFilter

adaptfilt.ftf

adaptfilt.swftf

dsp.FastTransversalFilter

13-23

https://www.mathworks.com/help/releases/R2015a/simulink/slref/mathfunction.html
https://www.mathworks.com/help/releases/R2015a/simulink/slref/trigonometricfunction.html
https://www.mathworks.com/help/releases/R2015a/simulink/slref/constant.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lmsfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.blocklmsfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.rlsfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.fasttransversalfilter-class.html

adaptfilt Object Use This System object Instead
adaptfilt.ap

adaptfilt.apru

adaptfilt.bap

dsp.AffineProjectionFilter

adaptfilt.gal

adaptfilt.lsl

adaptfilt.qrdlsl

dsp.AdaptiveLatticeFilter

adaptfilt.filtxlms dsp.FilteredXLMSFilter
adaptfilt.fdaf

adaptfilt.ufdaf

dsp.FrequencyDomainAdaptiveFilter

adaptfilt.blmsfft Will be removed in a future release
adaptfilt.adjlms

adaptfilt.dlms

Will be removed in a future release

adaptfilt.pbfdaf

adaptfilt.pbufdaf

Will be removed in a future release

adaptfilt.tdafdct

adaptfilt.tfafdft

Will be removed in a future release

Functionality changed or being removed for blocks and System
objects
Removal of sample mode from the DSP System Toolbox System objects

The FrameBasedProcessing property of all DSP System objects will be removed in a future release.
System objects containing this property will then work only in frame-based processing mode. See
What Is Frame-Based Processing? for more information. Effective R2015a, modifying this property
throws a warning for these System objects:

• dsp.AllpoleFilter
• dsp.AnalyticSignal
• dsp.BiquadFilter
• dsp.Buffer
• dsp.CumulativeProduct
• dsp.CumulativeSum
• dsp.Delay
• dsp.FIRFilter
• dsp.IIRFilter
• dsp.MatFileReader

R2015a

13-24

https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.affineprojectionfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.adaptivelatticefilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.filteredxlmsfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.frequencydomainadaptivefilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ug/sample-and-frame-based-concepts.html#bso3re7

• dsp.MatFileWriter
• dsp.Maximum
• dsp.Mean
• dsp.Minimum
• dsp.PeakToPeak
• dsp.PeakToRMS
• dsp.PhaseUnwrapper
• dsp.RMS
• dsp.SignalSink
• dsp.StandardDeviation
• dsp.VariableFractionalDelay
• dsp.VariableIntegerDelay
• dsp.Variance
• dsp.ZeroCrossingDetector

In the dsp.CumulativeProduct and dsp.CumulativeSum System objects, the default value of
FrameBasedProcessing property is true.

Option to specify filter coefficients from Digital Up Converter and Digital Down Converter
System objects being removed

FilterSpecification and its related properties will be removed in a future release from the
dsp.DigitalUpConverter and dsp.DigitalUpConverter System objects. The System objects
then will not allow you to specify coefficients for individual stages.

System object Properties Being Removed
dsp.DigitalUpConverter • FilterSpecification

• FirstFilterCoefficients
• SecondFilterCoefficients
• FirstFilterCoefficientsDataType
• SecondFilterCoefficientsDataType
• CustomFirstFilterCoefficientsDataType
• CustomSecondFilterCoefficientsDataType

dsp.DigitalDownConverter • FilterSpecification
• SecondFilterCoefficients
• ThirdFilterCoefficients
• SecondFilterCoefficientsDataType
• ThirdFilterCoefficientsDataType
• CustomSecondFilterCoefficientsDataType
• CustomThirdFilterCoefficientsDataType

13-25

https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.digitalupconverter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.digitaldownconverter-class.html

Removal of OutputDataType and OverflowAction properties for CIC Compensation
Interpolator and Decimator System objects

The OutputDataType and OverflowAction properties for dsp.CICCompensationInterpolator
and dsp.CICCompensationDecimator System objects have been removed. The OutputDataType
property of these System objects is now always Same word length as input. For these System
objects, the word length matches the input word length, and the fraction length is computed to give
the best possible precision to the data. You no longer have access to this parameter.

R2015a

13-26

https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.ciccompensationinterpolator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.ciccompensationdecimator-class.html

R2014b

Version: 8.7

New Features

Compatibility Considerations

14

Optimized C code generation for ARM Cortex-A Ne10 library from
MATLAB and Simulink with DSP System Toolbox Support Package for
ARM Cortex-A Processors
This release adds code-generation support for ARM Cortex-A processors in MATLAB for select blocks
and System objects. With the supported blocks and System objects, you can generate optimized C
code that calls the Ne10 library function and compiles to provide an executable to run on ARM
Cortex-A processors. To use the DSP System Toolbox Support Package for ARM Cortex-A Processors,
you must have the following products:

• DSP System Toolbox
• Embedded Coder
• MATLAB Coder

To design in Simulink, you must also have these products:

• Simulink
• Simulink Coder

The following DSP System Toolbox blocks and System objects support the Ne10 library:

• Discrete FIR Filter
• FIR Decimation
• FIR Interpolation
• FFT
• IFFT
• dsp.FIRFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FFT
• dsp.iFFT
• dsp.VariableBandwidthFIRFilter
• dsp.FIRHalfbandInterpolator
• dsp.FIRHalfbandDecimator
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.DigitalDownConverter
• dsp.DigitalUpConverter
• dsp.SampleRateConverter

For more information, see Support Package for ARM Cortex-A Processors.

R2014b

14-2

https://www.mathworks.com/help/releases/R2014b/dsp/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/firinterpolation.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/fft.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/ifft.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.fft-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ifft-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.variablebandwidthfirfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.digitaldownconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.digitalupconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.samplerateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/supportpkg/armcortexadst/index.html

System objects for DSP System Toolbox Support Package for ARM
Cortex-M Processors
This release adds support to generate optimized C code for the following System objects on ARM
Cortex-M processors

• dsp.VariableBandwidthFIRFilter
• dsp.FIRHalfbandInterpolator
• dsp.FIRHalfbandDecimator
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.DigitalDownConverter
• dsp.DigitalUpConverter
• dsp.SampleRateConverter

Fixed-point support for Biquad Filter on DSP System Toolbox Support
Package for ARM Cortex-M Processors
This release adds fixed-point support to generate optimized C code for the Biquad Filter block and
dsp.BiquadFilter System object on ARM Cortex-M processors. The supported data formats are
Q15 and Q31.

Multirate filters: Sample and Farrow Rate Converter, CIC
Compensation Interpolator/Decimator, and FIR Halfband Interpolator/
Decimator System objects
This release adds the following multirate filter System objects:

• dsp.SampleRateConverter
• dsp.FarrowRateConverter
• dsp.CICCompensationInterpolator
• dsp.CICCompensationDecimator
• dsp.FIRHalfbandInterpolator
• dsp.FIRHalfbandDecimator

Tunable coefficients and variable-size input available on FIR
Interpolator System object and block
The FIR Interpolation block and the dsp.FIRInterpolator System object now support tunable
coefficients and variable-size input, enabling you to specify filter coefficients from the input port.

14-3

https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.variablebandwidthfirfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.CICCompensationDecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.digitaldownconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.digitalupconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.samplerateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/biquadfilter.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.samplerateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.farrowrateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/firinterpolation.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firinterpolator-class.html

Variable-size input available on FIR Decimator System object and
block
The FIR Decimation block and the dsp.FIRDecimator System object now support variable-size
input.

Min/Max logging instrumentation for float-to-fixed-point conversion of
commonly used DSP System objects, including Biquad Filter, FIR Filter,
and FIR Rate Converter
You can now convert the following DSP System Toolbox System objects to fixed point using the Fixed-
Point Converter app (requires a Fixed-Point Designer license).

• dsp.BiquadFilter
• dsp.FIRFilter, direct form only
• dsp.FIRRateConverter
• dsp.LowerTriangularSolver
• dsp.UpperTriangularSolver
• dsp.ArrayVectorAdder

You can propose and apply data types for these System objects based on simulation range data.
During the conversion process, you can view simulation minimum and maximum values and proposed
data types for these System objects. You can also view whole number information and histogram data.
You cannot propose data types for these System objects based on static range data.

HDL-optimized FFT and IFFT System objects and HDL-optimized
Complex to Magnitude-Angle System object and block
This release introduces:

• dsp.HDLFFT and dsp.HDLIFFT System objects for the fast Fourier transform and inverse FFT,
optimized for HDL code generation

• Complex to Magnitude-Angle HDL Optimized block and dsp.ComplexToMagnitudeAngle
System object for converting complex inputs to magnitude and phase angle, optimized for HDL
code generation using the CORDIC algorithm

Real input, bit-reversed output, reset input available on HDL-
optimized FFT and IFFT
The following blocks and System objects now support real input, enable you to select or disable bit-
reversed output, and provide an optional reset input:

• FFT HDL Optimized
• IFFT HDL Optimized
• dsp.HDLFFT
• dsp.HDLIFFT

R2014b

14-4

https://www.mathworks.com/help/releases/R2014b/dsp/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firrateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.lowertriangularsolver-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.uppertriangularsolver-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.arrayvectoradder-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlifft-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/complextomagnitudeanglehdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlcomplextomagnitudeangle-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlfft-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.hdlifft-class.html

Option to synthesize lookup table to ROM available on HDL-optimized
FFT and IFFT blocks
To enable this feature, right-click the block, select HDL Code > HDL Block Properties and set
LUTRegisterResetType to none.

The option to synthesize LUT to a ROM is not available on System objects.

Reduced latency of HDL-optimized FFT and IFFT
The FFT HDL Optimized and IFFT HDL Optimized blocks take fewer cycles to compute one frame of
output than in previous releases. For instance, for the default 1024-point FFT, the latency in R2014a
was 1589 cycles. In R2014b, the latency is 1148 cycles. The latency is displayed on the block icon.

Compatibility Considerations
If you have manually matched latency paths in models using the R2014a version of the FFT HDL
Optimized and IFFT HDL Optimized block, rebalance those paths with the new latency.

CIC algorithm and HDL code generation for DC Blocker
This release adds an option to implement the DC Blocker using the CIC algorithm. You can generate
HDL code from DC Blocker and dsp.DCBlocker. CIC mode is not yet supported for HDL code
generation.

dsp.FilterCascade System object
This release introduces a new System object, dsp.FilterCascade, that constructs a cascade of
filter System objects.

Phase Extractor block and dsp.PhaseExtractor System object
This release introduces a new block, Phase Extractor, and a new System object,
dsp.PhaseExtractor, that extract the unwrapped phase from complex input signals.

Overrun and underrun reporting on audio device blocks and System
objects
The following blocks and System objects now provide a count of samples lost to queue underrun/
overrun since the last transfer of a frame to or from an audio device. You can use this information to
debug throughput problems.

• To Audio Device
• From Audio Device
• dsp.AudioPlayer
• dsp.AudioRecorder

14-5

https://www.mathworks.com/help/releases/R2014b/dsp/ref/ffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/iffthdloptimized.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dcblocker.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.dcblocker-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.filtercascade-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/phaseextractor.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.phaseextractor-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/toaudiodevice.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/fromaudiodevice.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.audioplayer-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.audiorecorder-class.html

For an example of how to measure and tune audio throughput see Measuring Audio Latency example.
You can open this example by typing audiolatencymeasurement at the MATLAB command line.

Unsigned input data type in dsp.CICDecimator and
dsp.CICInterpolator System Objects
dsp.CICDecimator and dsp.CICInterpolator System objects now support unsigned input data
type.

Logic Analyzer support for vector, enumerated, and complex inputs
The dsp.logicAnalyzer System object now supports vector, enumerated, and complex input
signals.

System object support in Simulink For Each Subsystem
The new supportsMultipleInstanceImpl method enables the use of System objects in Simulink
For Each Subsystem blocks. Include this method in your System object class definition file when you
define a new kind of System object.

Getting Started Tutorials
This release adds 15 new tutorials, which illustrate a broad range of applications supported by the
DSP System Toolbox software. There are new tutorials on the following topics:

• Streaming signal processing
• Filter design in MATLAB and Simulink
• Real-time audio processing and latency measurements
• Signal visualization in time and frequency
• Algorithm acceleration using code generation
• Multistage-multirate filtering for sample-rate conversion
• Authoring System objects
• Deploying MATLAB code and applications

See Getting Started with DSP System Toolbox for links to the new tutorials.

Functionality being removed or replaced for blocks and System
objects
The Signal To Workspace block is now called To Workspace.

Certain functionality in the following blocks and System objects will be removed in future releases:

• Digital Filter block
• Variable Integer Delay block
• Delay block
• dsp.DigitalFilter

R2014b

14-6

https://www.mathworks.com/help/releases/R2014b/dsp/examples/measuring-audio-latency.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.cicdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.cicinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.logicanalyzer-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/matlab.system.supportsmultipleinstanceimpl.html
https://www.mathworks.com/help/releases/R2014b/dsp/getting-started-with-dsp-system-toolbox.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/toworkspace.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/digitalfilterobsolete.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/variableintegerdelayobsolete.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/delay.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.digitalfilter-class.html

• dsp.VariableIntegerDelay
• dsp.Delay

These features will trigger a warning in R2014b. For most functionality, you can automatically update
your model by running the Upgrade Advisor and selecting 'Check model for known block
upgrade issues requiring compile time information'. See Consult the Upgrade Advisor.

Compatibility Considerations
Digital Filter and dsp.DigitalFilter

Use of the Digital Filter block and dsp.DigitalFilter System object in future releases is not
recommended. Existing instances will continue to operate, but certain functionality will be disabled.
If your model includes the functionality listed in the table below, you must update your model.

For future designs, choose from Discrete FIR Filter, Discrete Filter, Biquad Filter, or Allpole Filter
blocks, and dsp.FIRFilter, dsp.IIRFilter, dsp.BiquadFilter, or dsp.AllpoleFilter
System objects.

The functionality in the following table will be removed in future releases. The table describes the
changes for the Digital Filter block. For dsp.DigitalFilter, apply the changes using the
corresponding properties.

Functionality Applies When... Use This Functionality Instead Automatic fix
using
Upgrade
Advisor?

Updating filter
coefficients once
per sample

Coefficient source is
Input port(s), Input
processing is Columns
as channels (frame
based), and Coefficient
update rate is One
filter per sample

Set Coefficient update rate to One
filter per frame, insert the filter
block in a For Iterator subsystem
block, and use Variable Selector
blocks to apply one set of coefficients
to each input sample in a loop.

Yes

Column-based
vector filter
coefficients from
input ports

Coefficient source is
Input port(s)

Transpose your filter coefficients into
a row vector by using a Transpose
block.

Yes

Nonunity
denominator
coefficients from
input ports

Coefficient source is
Input port(s),
Transfer function type
is either IIR (poles &
zeros) or IIR (all
poles), and the First
denominator coefficient
= 1, remove a0 term in
the structure check box
is cleared.

Ensure the First denominator
coefficient = 1, remove a0 term in
the structure check box is selected,
and scale your coefficients and initial
values accordingly.

Yes

14-7

https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.variableintegerdelay-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.delay-class.html
https://www.mathworks.com/help/releases/R2014b/simulink/ug/consult-the-upgrade-advisor.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/digitalfilterobsolete.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.digitalfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/discretefilter.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/biquadfilter.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/allpolefilter.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.iirfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.allpolefilter-class.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/foriterator.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/transpose.html

Functionality Applies When... Use This Functionality Instead Automatic fix
using
Upgrade
Advisor?

Complex Biquad
scale values

Transfer function type
is IIR (poles and
zeros) and the Filter
structure is any SOS
form

Use real scale values. Alternatively, for
non-fixed-point input data types and
zero initial conditions, set the scale
value to 1, and add a Gain block at the
filter's input port, where the gain
value is equal to the product of the
complex scale values.

Yes

State data type
different from
Accumulator
data type

Transfer function type
is FIR (all zeros) and
the Filter structure is
Direct form I
transposed

Set the State data type to Same as
accumulator.

No

Note To automatically apply the suggested fix in the Upgrade Advisor, select Check model for
known block upgrade issues requiring compile time information.

Variable Integer Delay and dsp.VariableIntegerDelay

The DSP Variable Integer Delay block has been replaced with the Simulink Variable Integer Delay
block. Existing instances of the DSP block will continue to operate, but certain functionality in the
DSP block and dsp.VariableIntegerDelay System object will be disabled in future releases. If
your model includes the functionality listed in the table below, you must update your model.

The functionality in the following table will be removed in future releases. The table describes the
changes for the Variable Integer Delay block. For dsp.VariableIntegerDelay, apply the changes
using the corresponding properties.

Functionality Applies When... Use This Functionality Instead Automatic fix
using Upgrade
Advisor?

Nonscalar
delay

Using the block only.
Nonscalar delay remains
supported in the
dsp.VariableIntegerDe
lay System object.

Insert your block in a For Each
subsystem and partition the data and
delay inputs to apply each delay value
to the corresponding data channel.

Yes

Initial
conditions
specified as a
vector

Input processing is
Columns as channels
(frame based), and the
input has multiple channels
(columns)

Specify the Initial conditions as a
1×NumChansx×R matrix, where
NumChans is the number of input
channels, and R is the maximum delay
value.

Yes

R2014b

14-8

https://www.mathworks.com/help/releases/R2014b/simulink/slref/gain.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/variableintegerdelayobsolete.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/variableintegerdelay.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.variableintegerdelay-class.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/foreach.html

Functionality Applies When... Use This Functionality Instead Automatic fix
using Upgrade
Advisor?

Input processing is
Elements as channels
(sample based), and the
input has multiple channels
(samples)

Specify the initial conditions as a
(dim1×dim2×...×dimN)×R array
instead, where dimM is the Mth input
dimension and R is the maximum delay
value.

Yes

Note To automatically apply the suggested fix in the Upgrade Advisor, select Check model for
known block upgrade issues requiring compile time information.

Delay and dsp.Delay

The functionality in the following table will be removed in future releases. The table describes the
changes for the Delay block. For dsp.Delay, apply the changes using the corresponding properties.

Functionality Applies When... Use This Functionality Instead Automatic fix
using
Upgrade
Advisor?

Nonscalar
delay

Using the block only.
Nonscalar delay remains
supported in dsp.Delay
System object.

Use a Variable Integer Delay block in a
For Each subsystem. Partition the data
and delay inputs to apply each delay
value to the corresponding data
channel.

Yes

Delay specified
in units of
frames

Delay units is Frames Set Delay units to Samples and set
your new delay as the delay in frames
multiplied by the frame length.

Yes

14-9

https://www.mathworks.com/help/releases/R2014b/dsp/ref/delay.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.delay-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/variableintegerdelay.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/foreach.html

Functionality Applies When... Use This Functionality Instead Automatic fix
using
Upgrade
Advisor?

Specification
of different
initial
conditions for
each channel
but same
conditions
within a
channel

The Specify different
initial conditions
for each channel check
box is selected, and the
Specify different
initial conditions
within a channel check
box is cleared.

Clear both check boxes and specify the
initial condition as a scalar.
Alternatively, you can select the
Specify different initial
conditions within a channel
check box and specify the initial
conditions as follows:

• If Input processing is Columns
as channels (frame based),
specify the initial conditions as a
delay-by-NumChans matrix, where
delay is the delay value and
NumChans is the number of input
channels.

• If Input processing is Elements
as channels (sample based),
change input processing to
Columns as channels (frame
based), reshape the input to a row
vector, and specify initial conditions
as a delay-by-NumChans matrix,
where delay is the delay value and
NumChans is the number of input
elements.

Yes

R2014b

14-10

Functionality Applies When... Use This Functionality Instead Automatic fix
using
Upgrade
Advisor?

Specification
of different
initial
conditions
within a
channel but
same
conditions for
each channel

The Specify different
initial conditions
within a channel check
box is selected, and the
Specify different
initial conditions
for each channel check
box is cleared.

Clear both check boxes and specify the
initial condition as a scalar.
Alternatively, you can select the
Specify different initial
conditions for each channel
check box and specify the initial
conditions as follows:

• If Input processing is Columns
as channels (frame based),
specify the initial conditions as a
delay-by-NumChans matrix, where
delay is the delay value and
NumChans is the number of input
channels.

• If Input processing is Elements
as channels (sample based),
set Input Processing to Columns
as channels (frame based),
reshape the input to a row vector,
and specify initial conditions as a
delay-by-NumChans matrix, where
delay is the delay value and
NumChans is the number of input
elements.

Yes

14-11

Functionality Applies When... Use This Functionality Instead Automatic fix
using
Upgrade
Advisor?

Initial
conditions
specified as
cell array

 Clear the Specify different
initial conditions within a
channel and Specify different
initial conditions for each
channel check boxes and specify the
initial condition as a scalar.
Alternatively, select both check boxes
and modify the initial conditions as
follows:

• If Input processing is Columns
as channels (frame based),
specify initial conditions as a delay-
by-NumChans matrix, where delay
is the delay value and NumChans is
the number of input channels.

• If Input processing is Elements
as channels (sample based),
set Input Processing to Columns
as channels (frame based),
reshape the input to a row vector,
and specify initial conditions as a
delay-by-NumChans matrix, where
delay is the delay value and
NumChans is the number of input
elements.

Yes

Note To automatically apply the suggested fix in the Upgrade Advisor, select Check model for
known block upgrade issues requiring compile time information.

Persistence mode in Vector Scope
The Vector Scope block no longer supports Persistence mode, which retained historical data on a
single plot.

Compatibility Considerations
You do not need to update any existing model that had Persistence mode set. As of R2014b, you will
not see historical data on your Vector Scope.

Code generation for additional DSP System Toolbox System objects
In R2014b, you can generate code from the following additional DSP System Toolbox System objects.
Code generation from MATLAB code requires a MATLAB Coder license.

R2014b

14-12

• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.FarrowRateConverter
• dsp.FilterCascade

You cannot generate code directly from dsp.FilterCascade. Instead, first use the
dsp.FilterCascade.generateFilteringCode method to generate a MATLAB function from
the System object. Then generate C/C++ code from the MATLAB function.

• dsp.FIRDecimator for transposed structure
• dsp.FIRHalfbandDecimator
• dsp.FIRHalfbandInterpolator
• dsp.PeakToPeak
• dsp.PeakToRMS
• dsp.PhaseExtractor
• dsp.SampleRateConverter
• dsp.StateLevels

See System Objects in MATLAB Code Generation and Functions and System Objects Supported for C
Code Generation.

Tunable amplitude on dsp.SineWave
The Amplitude property of dsp.SineWave is now tunable when the Method property is
Differential or Trigonometric function.

14-13

https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.ciccompensationinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.farrowrateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.filtercascade-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.filtercascade.generatefilteringcode.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbanddecimator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firhalfbandinterpolator-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.peaktopeak-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.peaktorms-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.phaseextractor-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.samplerateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.statelevels-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/gs/use-system-objects-in-matlab-code-generation.html
https://www.mathworks.com/help/releases/R2014b/dsp/ug/code-generation-with-system-objects.html
https://www.mathworks.com/help/releases/R2014b/dsp/ug/code-generation-with-system-objects.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.sinewave-class.html#dsp.SineWave.Amplitude
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.sinewave-class.html

R2014a

Version: 8.6

New Features

Compatibility Considerations

15

Up to four-times faster FIR filter simulation in MATLAB System object
and Simulink block
This release introduces a refactoring of the Discrete FIR Filter block and dsp.FIRFilter System
object to significantly improve simulation speed in multi-core processors. The refactored FIR
simulation in MATLAB and Simulink leverages the Intel® Threading Building Blocks (TBB) library to
optimize multi-core parallelism at the channel and frame level.

Optimized C code generation for ARM Cortex–M processors from
System objects with MATLAB Coder and Embedded Coder
This release adds code-generation support for ARM Cortex-M processors in MATLAB for select
System objects. With the supported System objects, you can generate C code that can be linked with
the CMSIS library and compiled to provide an executable to run on ARM Cortex-M processors. To use
the DSP System Toolbox Support Package for ARM Cortex-M Processors, you must have the following
products in addition to the DSP System Toolbox: Simulink, Simulink Coder, Embedded Coder and
MATLAB Coder. The following DSP System Toolbox System objects support the CMSIS library:

• dsp.FIRFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.LMSFilter
• dsp.BiquadFilter
• dsp.FFT
• dsp.IFFT
• dsp.Convolver
• dsp.CrossCorrelator
• dsp.Mean
• dsp.RMS
• dsp.StandardDeviation
• dsp.Variance

Notch/peak filter and parametric equalizer filter System objects in
MATLAB
This release introduces new second-order IIR notching/peaking and parametric equalizer filters. Use
dsp.NotchPeakFilter to implement a peaking or notching filter. With dsp.NotchPeakFilter,
you can control the center frequencies and 3-dB bandwidths of the peaks/notches with tunable
properties.

Use dsp.ParametricEQFilter to implement a parametric equalizer with tunable gain, bandwidth,
and center frequency.

Variable bandwidth FIR and IIR filter System objects in MATLAB
This releases introduces two new System objects, dsp.VariableBandwidthFIRFilter and
dsp.VariableBandwidthIIRFilter, which allow you to vary the passband while filtering.

R2014a

15-2

https://www.mathworks.com/help/releases/R2014a/dsp/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.lmsfilter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.fft-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.ifft-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.convolver-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.crosscorrelator-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.mean-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.rms-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.standarddeviation-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.variance-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.notchpeakfilter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.parametriceqfilter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.variablebandwidthfirfilter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.variablebandwidthiirfilter-class.html

dsp.VariableBandwidthFIRFilter and dsp.VariableBandwidthIIRFilter enable you to
tune the filter in a computationally efficient way while preserving your filter structure.

Pink/Colored noise generation System object in MATLAB
This release introduces the ability to generate noise with a 1/f α power spectral density. You can set α
equal to any value in the interval [-2,2]. Specifying α=1 results in pink noise, while setting α=2
produces Brownian noise. See dsp.ColoredNoise for details.

HDL optimized FFT and IFFT Simulink blocks
This release introduces FFT HDL Optimized and IFFT HDL Optimized blocks for the discrete Fourier
transform (DFT) and inverse DFT optimized for HDL code generation.

Fixed-point data type support for FIR filter, in ARM Cortex-M support
package
The Discrete FIR Filter from the Simulink workflow, and the dsp.FIRFilter from the MATLAB
workflow, support fixed-point data types defined in the CMSIS library.

Choice of wrapping or truncating input of FFT, IFFT, and Magnitude
FFT in MATLAB and Simulink
In the FFT, IFFT, and Magnitude FFT blocks, a boolean parameter has been added that is by default
checked. This widget reads: Wrap input data when FFT length is shorter than input length, and
it gives you the choice of wrapping or truncating the input, depending on the FFT length. If this
parameter is checked, modulo-length data wrapping occurs before the FFT operation, given FFT
length is shorter than the input length. If this property is unchecked, truncation of the input data to
the FFT length occurs before the FFT operation.

In the dsp.FFT and dsp.IFFT System objects, a boolean property is added that is by default true. If
this property is set to true, modulo-length data wrapping occurs before the FFT operation, given FFT
length is shorter than the input length. If this property is set to false, truncation of the input data to
the FFT length occurs before the FFT operation.

Variable-size input for biquad and LMS filters in MATLAB and Simulink
The Biquad Filter and LMS Filter blocks and the corresponding System objects, dsp.BiquadFilter
and dsp.LMSFilter, now support variable-size input. In Simulink, this support means that the frame
size (number of rows) can change during simulation. In a System object, this support allows the step
method to handle an input that is changing in size.

More flexible control of dsp.LMSFilter System object fixed-point
settings
In this release you can specify independent fixed-point data types for all dsp.LMSFilter System
object fixed-point settings.

15-3

https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.colorednoise-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/fft.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ifft.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/magnitudefft.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.fft-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.ifft-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/biquadfilter.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/lmsfilter.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.lmsfilter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.lmsfilter-class.html

DC blocker System object and Simulink block
This release adds a new System object and Simulink block to remove the DC component of a signal.
Use dsp.DCBlocker in MATLAB and the corresponding block, DC Blocker, in Simulink.

dsp.DigitalDownConverter and dsp.DigitalUpConverter now support C
code generation
In this release you can generate C code for both digital down and up converters.

The isDone method of dsp.AudioFileReader honors PlayCount
The behavior of isDone has changed for this object. isDone returns True when EOF is reached
PlayCount number of times. The default of PlayCount has changed from Inf to 1.

Compatibility Considerations
If you had a while loop controlled by isDone, and you had set the PlayCount to Inf, you should now
set it to the number of times you want the loop to be executed, otherwise you will have an infinite
loop.

M4A replaced by MPEG4 in dsp.AudioFileWriter
In dsp.AudioFileWriter, the M4A file format has been changed to MPEG4.

Spectrogram cursors and CCDF plots in the spectrum analyzer
This release introduces cursors in dsp.SpectrumAnalyzer when the SpectrumType is set to
'Spectrogram'. Additionally, you can now obtain complementary cumulative distribution function
(CCDF) plots for your data.

Changed dsp.SpectrumAnalyzer property names
This table lists the dsp.SpectrumAnalyzer property name changes.

Old Property Name New Property Name
Grid ShowGrid
LegendSource ShowLegend
MaxHoldTrace PlotMaxHoldTrace
MinHoldTrace PlotMinHoldTrace
NormalTrace PlotNormalTrace
TwoSidedSpectrum PlotAsTwoSidedSpectrum

Compatibility Considerations
Update all instances of old names in your code to the new names.

R2014a

15-4

https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.dcblocker-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dcblocker.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.audiofilewriter-class.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.spectrumanalyzer-class.html

Conversion to/from allpass from/to wave digital filter
This release introduces two new conversion functions, allpass2wdf and wdf2allpass, which
enable you to convert from an allpass filter to a wave digital filter and from a wave digital filter to an
allpass filter.

Transfer function estimation in Simulink
This release introduces a new Simulink block for transfer function estimation. You can find the
Discrete Transfer Function Estimator block in the Power Spectrum Estimation library.

Updates to the Time Scope
The following updates have been made to the Time Scope.

• Array, structure, structure with time, and MAT-file logging formats
• Compact toolbar to allow more space for data display
• Scale X-axis , Y-axis, and XY-axes options, autoscaling and panning
• Default display does not show time-axis label. You can, optionally, turn the label on.
• Sampling option
• Model Configuration properties now honored by the Time Scope
• Snap-to-data cursors option to force cursors to data points
• Open Measurements panels saved when you save a model. Those panels reopen when you open

the saved model.

Changed dsp.TimeScope property names
This table lists the dsp.TimeScope property name changes.

Old Property Name New Property Name
Grid ShowGrid
LegendSource ShowLegend
MagnitudePhase PlotAsMagnitudePhase
TimeSpanOverrunMode TimeSpanOverrunAction

Compatibility Considerations
Update all instances of old names in your code to the new names.

Time Scope automatically switches to block-based sample time
The Time Scope uses port-based sample time, except in Simulink External or Rapid-Accelerator
modes. In External and Rapid-Acceleration modes, the Time Scope switches to block-based sample
time. Port-based sample time uses individual sample times for each input port. Block-based sample
time uses the same sample time for the whole block.

15-5

https://www.mathworks.com/help/releases/R2014a/dsp/ref/allpass2wdf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/wdf2allpass.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/discretetransferfunctionestimator.html

dsp.LogicAnalyzer channel selection
In the dsp.LogicAnalyzer System object, you now can select individual or multiple channels. Then,
you can find the next and previous transitions for the selected channel. Also, you can copy, paste, and
move selected channels.

System object templates
The MATLAB New > System object menu now has three new class-definition file templates. The
Basic template sets up a simple System object. The Advanced template includes additional features
of System objects. The Simulink Extension template provides additional customization of the
System object for use in the MATLAB System block.

System objects infer number of inputs and outputs from stepImpl
method
When you create a new kind of System object that has a fixed number of inputs or outputs specified in
the stepImpl method, you no longer need to include getNumInputsImpl or getNumOutputsImpl
in your class definition file. The correct number of inputs and outputs are inferred from the
stepImpl inputs and outputs, respectively.

System objects setupImpl method enhancement
When you create a new kind of System object and include the setupImpl method, you do not have to
match the setupImpl method inputs to the stepImpl method inputs. If your setupImpl method
does not use any input characteristics, such as, data type or size), you can include only the System
object as the input argument.

System objects infoImpl method allows variable inputs
When you create a new kind of System object, you can use the info method to provide information
specific to that object. The infoImpl method, which you include in your class-definition file, now
allows varargin as an input argument.

System objects base class renamed to matlab.System
The System object base class, matlab.system.System has been rename to matlab.System. If you
use matlab.system.System when defining a new System object, a error message results.

Compatibility Considerations
Change all instances of matlab.system.System in your System objects code to matlab.System.

System objects Propagates mixin methods
Four new methods have been added to the Propagates mixin class. You use this mixin when creating a
new kind of System object for use in the MATLAB System block in Simulink. You use these methods to
query the input and specify the output of a System object.

R2014a

15-6

• propagatedInputComplexity
• propagatedInputDataType
• propagatedInputFixedSize
• propagatedInputSize

Code generation support for additional functions
This release introduces code generation support for the following functions. You must have the
MATLAB Coder software to generate code.

• ca2tf
• cl2tf
• firceqrip
• fireqint
• firgr
• firhalfband
• firminphase
• firnyquist
• firpr2chfb
• ifir
• iircomb
• iirgrpdelay
• iirlpnorm
• iirlpnormc
• iirnotch
• iirpeak
• tf2ca
• tf2cl

15-7

https://www.mathworks.com/help/releases/R2014a/dsp/ref/ca2tf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/cl2tf.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firceqrip.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/fireqint.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firgr.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firhalfband.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firminphase.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firnyquist.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/firpr2chfb.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/ifir.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iircomb.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirgrpdelay.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnorm.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirlpnormc.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirnotch.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/iirpeak.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2ca.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/tf2cl.html

R2013b

Version: 8.5

New Features

Compatibility Considerations

16

Support Package for ARM Cortex-M Processors
The DSP System Toolbox Support Package for ARM Cortex-M Processors allows you to model your
signal processing algorithm in Simulink and generate C code. The generated code can be linked with
the CMSIS library, and compiled to provide an executable to run on ARM Cortex-M processors. To use
the DSP System Toolbox Support Package for ARM Cortex-M Processors, you must have the following
products in addition to the DSP System Toolbox: Simulink , Simulink Coder , Embedded Coder, and
MATLAB Coder. The following DSP System Toolbox blocks, which support this library, make it optimal
for use in the ARM Cortex-M processors.

• Discrete FIR Filter
• FIR Decimation
• FIR Interpolation
• LMS Filter
• Biquad Filter
• FFT
• IFFT
• Correlation
• Convolution
• Mean
• RMS
• Variance
• Standard Deviation

To download and install this feature, select Add-Ons > Get Hardware Support Packages on the
MATLAB Toolstrip. Then, use Support Package Installer to install the DSP System Toolbox Support
Package for ARM Cortex-M Processors. For more information, see Support Package for ARM Cortex-
M Processors.

Channel and distortion measurement, cursors, and spectrogram
visualization using Spectrum Analyzer in MATLAB and Simulink
To enhance visualizing your data, channel measurements, distortion measurements, cursor
measurements, and a spectrogram view have been added to the Spectrum Analyzer. Channel
measurements show occupied bandwidth and adjacent channel power ratio (ACPR) measurements.
Distortion measurements show harmonic distortion and intermodulation distortion measurements.
Cursor measurements show measurements between two cursors. A spectrogram is a display of the
frequencies in a signal over time.

Channel mapping for multichannel audio devices in MATLAB and
Simulink
The dsp.AudioPlayer and dsp.AudioRecorder System objects, and the To Audio Device and
From Audio Device blocks, now support channel mapping. The term channel mapping is used to refer
to a 1-1 mapping that associates channels on the selected audio device to channels of the data.

R2013b

16-2

https://www.mathworks.com/help/releases/R2013b/dsp/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/firdecimation.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/firinterpolation.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/lmsfilter.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/biquadfilter.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/fft.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/ifft.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/correlation.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/convolution.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/mean.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/rms.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/variance.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/standarddeviation.html
https://www.mathworks.com/help/releases/R2013b/dsp/support-package-for-arm-cortex-m-processors.html
https://www.mathworks.com/help/releases/R2013b/dsp/support-package-for-arm-cortex-m-processors.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.audioplayerclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.audiorecorderclass.html

When you play audio, channel mapping allows you to specify on which channel of the audio device to
output a specific channel of audio data. You can specify channel mapping as a vector of output
channel indices corresponding to each output channel of data being written.

When you record audio, channel mapping allows you to specify on which channel of the audio data to
input a specific channel of audio device. You can specify channel mapping as a vector of audio
channel indices corresponding to each channel of data being read.

Variable-size support for FIR and Allpole filters in MATLAB and
Simulink
In this release, dsp.AllpoleFilter, dsp.FIRFilter, Discrete FIR Filter block, and Allpole Filter
block support variable-size input. Thus the number of rows (size of the frame) can vary.

Estimation of Power Spectrum, Cross Power Spectrum, and Transfer
Function for streaming data in MATLAB
This release introduces dsp.TransferFunctionEstimator, dsp.SpectrumEstimator, and
dsp.CrossSpectrumEstimator. The transfer function estimator, estimates the complex frequency-
domain transfer function from time-domain data, based on the Welch averaged periodogram method.
dsp.TransferFunctionEstimator provides functionality similar to the Signal Processing Toolbox
function tfestimate, albeit in a streaming-friendly manner. The PSD and Cross-PSD estimators, are
also provided using the Welch averaged periodogram method, functionality similar to the
Periodogram block in DSP System Toolbox. These three System objects support double- and single-
precision floating point inputs. They also support C code generation.

Data logging and archiving using Time Scope in Simulink
Data logging and external mode data archiving have been added to the Time Scope block. You can
now log scope data to a MAT-file.

MIDI control interface support in MATLAB
R2013b introduces these five functions that together provide the same functionality as that of the
MIDI Controls block:

• midiid — Interactively identify a MIDI control.
• midicontrols — Open a group of MIDI controls for reading.
• midiread — Read the most recent values of the group of MIDI controls.
• midisync — Send values to update the group of MIDI controls.
• midicallback — Invoke a callback when an open control changes.

Among these functions, only midicontrols, midiread, and midisync support code generation.

Integer support on the output port of the MIDI Controls block
The MIDI Controls block now supports the uint8 data type on the output port, for the range of 0 to
127, selecting the raw MIDI mode.

16-3

https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.allpolefilterclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.firfilterclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/allpolefilter.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.transferfunctionestimatorclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.spectrumestimatorclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.crossspectrumestimatorclass.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/tfestimate.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/periodogram.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/midicontrols.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/midiid.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/functionmidicontrols.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/midiread.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/midisync.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/midicallback.html

Kalman filter
This release introduces dsp.KalmanFilter. This filter supports C/C++ code generation, single- and
double-precision floating point, MIMO, and optional control input. It also includes a subset of
functionality in the corresponding block, Kalman Filter, including:

• Initial condition for estimated state
• Initial condition for estimated error covariance
• State transition matrix
• Process noise covariance
• Measurement matrix
• Measurement matrix noise covariance
• Output estimated measurement
• Output estimated state
• Multiple parallel filters
• Disable update on a subset of filters

Adaptive filters using Lattice, Fast Transversal, Filtered-X LMS, and
Frequency Domain algorithms in MATLAB
The following adaptive filters are introduced in this release:

• dsp.AdaptiveLatticeFilter
• dsp.FastTransversalFilter (no code generation)
• dsp.FilteredXLMSFilter (no code generation)
• dsp.FrequencyDomainAdaptiveFilter

They have the following features:

• C/C++ code generation support
• Floating-point data type support (double and single) for inputs
• Variable frame-size for inputs
• Real and complex inputs

Coupled allpass filter
This release introduces the dsp.CoupledAllpass filter, which implements IIR filters as the sum of
two allpass filters operating in parallel. This filter allows you to use complex coefficients. It supports
Variable-size input, floating-point filter analysis, and the filter coefficients are tunable. You can
integrate this filter with filter design workflows such as fdesign and filterbuilder.

Functionality being removed or changed
Using fdesign.pulseshaping is discouraged because it is being removed in the future. However, it
still runs when you try to use this functionality, but you are encouraged to use rcosdesign and
gaussdesign instead.

R2013b

16-4

https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.kalmanfilterclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/kalmanfilter.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.adaptivelatticefilterclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.fasttransversalfilterclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.filteredxlmsfilterclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.frequencydomainadaptivefilterclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.coupledallpassfilterclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/fdesign.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/rcosdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/gaussdesign.html

Migrate away from fdesign.pulseshaping

Using fdesign.pulseshaping is not recommended. Use rcosdesign or gaussdesign. This table
shows examples of how to replace the old function with the new functions.

fdesign.pulseshaping rcosdesign and gaussdesign
sps=6;
span=4;
Beta=fdesign.pulseshaping(sps,...
 'Square Root Raised Cosine',...
 'Nsym,Beta',span,Beta);
d1=design(f1);
n1=d1.Numerator

n1n=rcosdesign(Beta,span,sps);
n1n=n1n/max(n1n)*(-1/(pi*sps)...
 * (pi*(Beta-1) -4*Beta))

g1=fdesign.pulseshaping(sps,...
'Square Root Raised Cosine',...
'N,Beta',sps*span,Beta);
h1=design(g1);
k1=h1.Numerator

k1n=rcosdesign(Beta,span,sps);
k1n=k1n/max(k1n)*(-1/(pi*sps)...
 (pi(Beta-1)-4*Beta))

f2=fdesign.pulseshaping(sps,...
 'Raised Cosine, ...
 'Nsym,Beta',span,Beta);
d2=design(f2);
n2=d2.Numerator

n2n=rcosdesign(Beta,span,sps,'normal');
n2n=n2n/max(abs(n2n))/sps

g2=fdesign.pulseshaping(sps,...
 'Raised Cosine',...
 'N,Beta',sps*span,Beta);
h2=design(g2);
k2=h2.Numerator

k2n=rcosdesign(Beta,span,sps,'normal');
k2n=k2n/max(abs(k2n))/sps

BT=0.3;
f3=fdesign.pulseshaping(sps,...'Gaussian',...
'Nsym,BT',span,BT);
d3=design(f3);
n3=d3.Numerator

n3n=gaussdesign(BT,span,sps)

Configuration dialog added to Logic Analyzer
A Visuals — Logic Analyzer Properties dialog box has been added to the dsp.LogicAnalyzer. This
dialog box allows you to change the appearance of the scope. To open this dialog box, select View >
Configuration Properties.

Complex trigger support in Time Scope
The Time Scope can plot signals as real/imaginary or magnitude/phase. In addition to using triggers
from the real or imaginary data, you can now use magnitude or phase values from complex signals as
triggers.

Default color changes for Array Plot, Time Scope, and Spectrum
Analyzer
The following scopes use a new default color scheme to help emphasize the data being visualized:

16-5

https://www.mathworks.com/help/releases/R2013b/signal/ref/rcosdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/gaussdesign.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.logicanalyzerclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/timescope.html

• dsp.ArrayPlot
• dsp.SpectrumAnalyzer and Spectrum Analyzer block
• dsp.TimeScope and Time Scope block

MATLAB System Block to include System objects in Simulink models
The MATLAB System block is a new block in the Simulink User-Defined Functions library. Use this
block to create a Simulink block that includes a System object™ in your model. This capability is
useful for including your algorithm in your model.

Restrictions on modifying properties in System object Impl methods
When defining a new System object, certain restrictions affect your ability to modify a property.

You cannot use any of the following methods to modify the properties of an object:

• cloneImpl
• getDiscreteStateImpl
• getDiscreteStateSpecificationImpl
• getNumInputsImpl
• getNumOutputsImpl
• getOutputDataTypeImpl
• getOutputSizeImpl
• isInputDirectFeedthroughImpl
• isOutputComplexImpl
• isOutputFixedSizeImpl
• validateInputsImpl
• validatePropertiesImpl

This restriction is required by code generation, which assumes that these methods do not change any
property values. These methods are validation and querying methods that are expected to be
constant and should not impact the algorithm behavior.

Also, if either of the following conditions exist:

• You plan to generate code for the object
• The object will be used in the MATLAB System block

you cannot modify tunable properties for any of the following runtime methods:

• outputImpl
• processTunedPropertiesImpl
• resetImpl
• setupImpl
• stepImpl
• updateImpl

R2013b

16-6

https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.arrayplotclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.spectrumanalyzerclass.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/matlabsystem.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/matlabsystem.html

This restriction prevents tunable parameter updates within the object from interfering with updates
from outside the generated code. Tunable parameters can only be changed from outside the
generated code.

Compatibility Considerations
If any of your class definition files contain code that changes a property in one of the above Impl
methods, move that property code into an allowable Impl method. Refer to the System object Impl
method reference pages for more information.

System objects matlab.system.System warnings
The System object base class, matlab.system.System, has been replaced by matlab.System. If
you use matlab.system.System when defining a new System object, a warning message results.

Compatibility Considerations
Change all instances of matlab.system.System in your System objects code to matlab.System.

Removing HDL Support for NCO Block
HDL support for the NCO block will be removed in a future release. Use the NCO HDL Optimized
block instead.

Compatibility Considerations
In the current release, if you generate HDL code for the NCO block, a warning message appears. In a
future release, any attempt to generate HDL code for the NCO block will cause an error.

16-7

https://www.mathworks.com/help/releases/R2013b/dsp/ref/nco.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/ncohdloptimized.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/nco.html
https://www.mathworks.com/help/releases/R2013b/dsp/ref/nco.html

R2013a

Version: 8.4

New Features

Compatibility Considerations

17

Allpass Filter System object
This release introduces an Allpass Filter System object™, dsp.AllpassFilter , which unifies
functionality already existing in a number of dfilt objects under various names. dsp.AllpassFilter
supports three different allpass structures and it can handle both single-section and cascaded
configurations. It also supports double and single floating point, multichannel and variable-length
input, tunability of filter coefficients and filter analysis.

Adaptive filter System objects using RLS and Affine Projection Filter
This release introduces two adaptive filter System objects, dsp.RLSFilter and
dsp.AffineProjectionFilter. These System objects both support double and single floating
point, and code generation.

Logic Analyzer System object
As of R2013a, DSP System Toolbox software provides a new Logic Analyzer System object that
enables you to view the transitions of signals. To create a Logic Analyzer System object variable
called h, at the MATLAB command prompt, type h=dsp.LogicAnalyzer. The Logic Analyzer has
several graphical features:

• Multiple signals in a single window — The y-axis of the display can contain a number of channels,
vertically tiled on top of each other.

• Ability to vary the display style — You can modify the name, height, color, and font size of each
wave.

• Analog and Digital display formats — Both discrete and continuous signals can appear as waves or
be tiled vertically in the display.

• Data numerical display options — You can display numerical values in various numeric systems,
including unsigned decimal, signed decimal, hexadecimal, octal, and binary form. Such flexibility
is especially useful for visualizing fixed-point signals.

• Cursors to mark points of interest and view values — By placing a cursor at a discrete time stamp,
you can position a solid vertical line on the display and observe the values of each channel at that
time stamp.

• Dividers to delineate groups of waves in a channel — By placing a divider on the display, you can
separate waves by horizontal dashed lines.

For more information, see the dsp.LogicAnalyzer System object reference topic.

Audio System object support for tunability, variable frame size,
variable number of channels, and writing MPEG-4 AAC
Effective 13a, variable frame size and variable number of channels are supported by
dsp.AudioPlayer. If you use variable-size signals with this System object, you may experience
sound dropouts when the size of the input changes. With the added support, you can avoid this
behavior. Before you start the simulation, call setup for a signal with maximum dimensions.

This release also enhances dsp.AudioPlayer and dsp.AudioRecorder System objects to make
sample rate, buffer size, and queue duration tunable. Tuning these properties stops and restarts the
sound card, which creates a pause. The length of the pause depends on your buffer size and queue
duration.

R2013a

17-2

https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.allpassfilterclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.rlsfilterclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.affineprojectionfilterclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.logicanalyzerclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.audioplayerclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.audioplayerclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.audiorecorderclass.html

In addition, the dsp.AudioFileWriter System object and To Multimedia File block are enhanced to
support MPEG-4 AAC audio files on Windows 7, and Mac OS X. You can use both M4A and MP4
extensions. The following platform specific restrictions apply when writing these files:

Windows 7 Mac OS X
• Only sample rates of 44100 and 48000 Hz are

supported.
• Only mono or stereo outputs are allowed.

• Only mono or stereo outputs are allowed.
• Output data is padded on both front and back

of the signal, with extra samples of silence.

Windows AAC encoder places sharp fade-in
and fade-out on an audio signal, causing the
signal to be slightly longer in samples when
written to disk.

• Not all sampling rates are supported,
although the Mac Audio Toolbox API do not
explicitly specify a restriction.

• A minimum of 1025 samples must be written
to the MPEG-4 AAC file.

Array Plot System object for displaying vectors or arrays in 2-D and
Spectrum Analyzer block with enhanced controls and features such as
peak finder
As of R2013a, DSP System Toolbox software provides a new Array Plot System object that enables
you to visualize streaming data in two dimensions. Using Array Plot, you can visualize any set of data
on the y-axis, opposite another set of data on the x-axis, labeling the x- and y-axes anything you
choose. To create an Array Plot System object variable called h, at the MATLAB command prompt,
type h=dsp.ArrayPlot. Array Plot contains the following panels.

• Cursor Measurements — shows cursors on all the displays. In the Settings pane, you can
choose either waveform cursors, which are always attached to the signal data, or screen cursors,
which may be placed anywhere on the axes. In the Measurements pane, you can see the x-axis
value, y-axis value, and other calculated values at the locations of the cursors.

• Signal Statistics — displays the maximum, minimum, peak-to-peak difference, mean, median,
and RMS values of a selected signal. It also shows the corresponding x-axis values at which the
maximum and minimum values occur.

• Peak Finder — displays y-axis maxima and the corresponding x-axis values at which they occur.
These displays allow you to modify the settings for peak threshold, maximum number of peaks,
and peak excursion.

For more information, see the dsp.ArrayPlot System object reference topic.

As of R2013a, DSP System Toolbox software provides a new Spectrum Analyzer block to replace the
Spectrum Scope block in the Sinks library. Using Spectrum Analyzer, you can view the power
spectrum or power spectral density of signals. The graphical interface of the Spectrum Analyzer
block resembles that of the dsp.SpectrumAnalyzer System object. Spectrum Analyzer contains the
following panels.

• Spectrum Settings — enables you to modify settings to control how the spectrum is calculated.
You can modify such parameters as frequency span, resolution bandwidth, number of spectral

17-3

https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.audiofilewriterclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.arrayplotclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.spectrumanalyzerclass.html

averages, and number of FFT points. You can also choose between a one-sided or two-sided
spectrum and toggle normal, maximum hold, and minimum hold trace views.

• Peak Finder — displays spectral maxima and the corresponding frequencies at which they occur.
These displays allow you to modify the settings for peak threshold, maximum number of peaks,
and peak excursion.

You can programmatically modify parameters of the Spectrum Analyzer block using MATLAB code. To
do so, you can first use the Simulink get_param function to get an instance of the
spbscopes.SpectrumAnalyzerConfiguration class. Then, you can use dot notation or the get
and set commands to modify properties of the Spectrum Analyzer block.

For more information, see the Spectrum Analyzer block reference topic.

Compatibility Considerations
All Simulink models containing Spectrum Scope blocks load with Spectrum Analyzer blocks in
R2013a or later. The Spectrum Scope block had several dialog box parameters that do not appear in
any Spectrum Analyzer block settings.

• Several options that were available on the Parameters dialog box of the Spectrum Scope block are
no longer available or have changed. The parameters of Spectrum Scope map to Spectrum
Analyzer parameters in the following manner.

R2013a

17-4

https://www.mathworks.com/help/releases/R2013a/dsp/ref/spectrumanalyzer.html

R2012b
Spectrum
Scope
Block
Paramete
rs dialog
box Tab
name

R2012b
Spectrum
Scope
Parameter

R2013a Spectrum Analyzer
Change

R2013a Spectrum Analyzer
Equivalent Parameter

Scope
Properties

Buffer input
check box

R2013a Spectrum Analyzer does
not require that input signals are
buffered. Spectrum Analyzer
determines the number of
samples needed using the value
of the RBW parameter.
Regardless of whether the input
is a frame-based or sample-based
signal, Spectrum Analyzer
calculates the spectrum once it
has acquired the requisite
number of samples.

For Spectrum Scope blocks in
R2012b or earlier models, the
equivalent R2013a Spectrum
Analyzer RBW value is given by
the equation:

RBW =
K × Fs

L

In the preceding equation, K is
the window constant calculated
for a segment length of 1000, Fs
is the sample rate of the block,
and L is the buffer length. If the
input signal to the R2012b
Spectrum Scope block was
frame-based and the Buffer
input check box was cleared,
then the R2013a Spectrum
Analyzer computes the RBW
value with L set to the frame size
of the input signal.

Scope
Properties

Buffer size
parameter

R2013a Spectrum Analyzer uses
the RBW parameter to
determine the requisite number
of samples to calculate the
spectrum, instead of using the
buffer size or frame length.

For Spectrum Scope blocks in
R2012b or earlier models, if the
input signal was frame-based
and the Buffer input check box
was selected, then the R2013a
Spectrum Analyzer computes the
RBW value with L set to the
value of the Buffer size
parameter.

Scope
Properties

Buffer
Overlap
parameter

R2013a Spectrum Analyzer has
an Overlap % parameter that is
directly related to buffer overlap.

R2013a Spectrum Analyzer will
compute its Overlap % using the
equation:

Op = Ol L × 100

In the preceding equation, Op is
Overlap % parameter value, Ol
is the R2012b Spectrum Scope
Buffer overlap parameter
value, and L is the buffer length.

17-5

R2012b
Spectrum
Scope
Block
Paramete
rs dialog
box Tab
name

R2012b
Spectrum
Scope
Parameter

R2013a Spectrum Analyzer
Change

R2013a Spectrum Analyzer
Equivalent Parameter

Scope
Properties

Window
parameter

R2013a Spectrum Analyzer does
not have the Bartlett,
Blackman, Triang, or Hanning
settings.

Spectrum Scope blocks in
R2012b or earlier models with a
window parameter set to any of
these values will have their
Window parameter set to Hann
in the R2013a Spectrum
Analyzer.

Scope
Properties

Window
Sampling
parameter

R2013a Spectrum Analyzer does
not have a Periodic option. All
window sampling is now
symmetric in the R2013a
Spectrum Analyzer.

n/a

Display
Properties

Persistence
check box —
this setting
would
execute the
equivalent of
the MATLAB
hold on
command,
adding
another line
for each
spectrum
computation
on the display.

This option is not available in the
R2013a Spectrum Analyzer,
which has replaced this feature
with the trace options, Normal
Trace, Max Hold Trace, and
Min Hold Trace.

Spectrum Scope blocks in
R2012b or earlier models with
persistence enabled will have
their Max Hold Trace check box
selected in the R2013a Spectrum
Analyzer.

Display
Properties

Compact
Display
check box

There is no equivalent capability
in the R2013a Spectrum
Analyzer.

n/a

Axis
Properties

Inherit
Sample time
from input
check box

R2013a Spectrum Analyzer
always uses the sample time of
the input signal.

n/a

R2013a

17-6

R2012b
Spectrum
Scope
Block
Paramete
rs dialog
box Tab
name

R2012b
Spectrum
Scope
Parameter

R2013a Spectrum Analyzer
Change

R2013a Spectrum Analyzer
Equivalent Parameter

Axis
Properties

Frequency
display
limits
parameter

R2013a Spectrum Analyzer
determines the range of
frequencies calculated based on
the Full Span, FStart (Hz), and
FStop (Hz) parameters.

If this parameter was set to:

• Auto — R2013a Spectrum
Analyzer selects the Full
Span check box on the
Spectrum Settings panel,
Main options pane.

• User-defined — R2013a
Spectrum Analyzer clears the
Full Span check box on the
Spectrum Settings panel
Main options pane.

Axis
Properties

Minimum
frequency
(Hz)
parameter

R2013a Spectrum Analyzer
determines the range of
frequencies calculated based on
the Full Span, FStart (Hz), and
FStop (Hz) parameters.

If the User-defined parameter
was chosen, then this parameter
maps to the R2013a Spectrum
Analyzer FStart (Hz) parameter.

Axis
Properties

Maximum
frequency
(Hz)
parameter

R2013a Spectrum Analyzer
determines the range of
frequencies calculated based on
the Full Span, FStart (Hz), and
FStop (Hz) parameters.

If the User-defined parameter
was chosen, then this parameter
maps to the R2013a Spectrum
Analyzer FStop (Hz) parameter.

Line
Properties

Line
visibilities,
Line styles,
Line
markers, and
Line colors
parameters

There are no equivalent
capabilities in the R2013a
Spectrum Analyzer.

Once the simulation has started,
you can modify the line styles,
markers, and colors using the
Style dialog box.

• The R2012b Spectrum Scope allowed you to retain the axes limits over multiple simulations by
selecting Axes > Save Axes Settings. There is no equivalent capability in the R2013a Spectrum
Analyzer. However, you can automatically scale the axes to a specified range using the Tools—Plot
Navigation Properties dialog box.

Time Scope block with triggering and peak finder features
As of R2013a, DSP System Toolbox provides the following enhancements to the Time Scope block and
the dsp.TimeScope System object:

• “Triggers Panel” on page 17-8
• “Peak Finder Features” on page 17-8

17-7

https://www.mathworks.com/help/releases/R2013a/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.timescopeclass.html

• “Panning Capability” on page 17-8
• “Programmatic Access” on page 17-8
• “Scale Axes Limits After 10 Updates” on page 17-8

For more information on these enhancements, see the Time Scope block reference topic or the
dsp.TimeScope System object reference topic.

Triggers Panel

The Time Scope contains a new Triggers panel that allows you to pause the display only when
certain events occur. You can use the Triggers panel when you want to align or search for events.

• In the Mode pane, you choose how often the display should update.
• In the Source / Type pane, you choose the type of events on which to stop. Events include edges

(rising, falling, or both), pulse width, transition, runt, window, or timeout.
• In the Levels / Timing pane, you can set the trigger level and hysteresis value.
• In the Delay / Holdoff pane, you can offset the trigger position by a fixed delay or set the

minimum possible time between trigger events.

To access the Triggers panel, in the Time Scope toolbar, click the Triggers button ().
Alternatively, in the Time Scope menu, select Tools > Triggers.

Peak Finder Features

Effective in R2013a, the peak finder now has the option of displaying more than 10 maxima at once.
You can also use the Peaks panel to toggle the labels for each local maximum. This capability allows
you to choose whether all the labels show time, value, or both time and value. R2013a also provides
the capability to sort in either ascending or descending order by value or by time.

Panning Capability

Effective in R2013a, you can pan in all directions on the Time Scope display. In the Time Scope

toolbar, click the Pan button (). Alternatively, in the Time Scope menu, select Tools > Pan. Then,
click and drag the mouse to the left or right to view a different range of data on the time-axis. Click
and drag the mouse up or down to see a different Amplitude range on the y-axis.

Programmatic Access

Effective in R2013a, you can change the properties of the Time Scope block using MATLAB
commands. To do so, you can first use the Simulink get_param function to get an instance of the
Simulink.scopes.TimeScopeConfiguration class. Then, you can use dot notation or the get
and set commands to modify properties of the Time Scope block.

For more information on these enhancements, see the Simulink.scopes.TimeScopeConfiguration class
reference topic.

Scale Axes Limits After 10 Updates

Effective in R2013a, you can scale the axes limits of the Time Scope displays soon after the
simulation starts. To do so, in the Time Scope menu, select Tools > Scale Axes Limits After 10
Updates.

R2013a

17-8

https://www.mathworks.com/help/releases/R2013a/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/simulink.scopes.timescopeconfigurationclass.html

Change of the default for audio hardware API on Linux
In this release, the default for audio hardware API on Linux has changed from OSS to ALSA.

Change of the default for audio file formats in multimedia blocks and
audio file reader and writer System objects
In the To Multimedia File block and the dsp.AudioFileWriter System object, the file format
default is now WAV. In the From Multimedia File block and the dsp.AudioFileReader System
object, the file format default is now MP3.

Change of property default in the audio file reader System object
In the dsp.AudioFileReader System object, the property OutputDataType returns doubles as
default.

Removal of the signalblks package
The signalblks package has been removed. Instead, for System object classes, and properties, use
the dsp package.

Compatibility Considerations
To automatically update the existing code, where the signalblks package is used, run
sysobjupdate. This function updates System object code to work in the current release. The
application recursively searches the specified folder and subfolders for MATLAB files that contain
renamed System object packages, classes, and properties.

Scope Snapshot display of additional scopes in Simulink Report
Generator
Using Simulink Report Generator™ software, you can include snapshots of the display produced by a
Scope block in a generated report. The Scope Snapshot component, which inserts images of the
Simulink Scope block and XY Graph block, now supports the Time Scope block and Spectrum
Analyzer block in DSP System Toolbox software.

Note This feature requires that you have a license for the Simulink Report Generator product.

For more information, see the Simulink Report Generator product documentation.

Unoriented vector treated as column vector in the Biquad Filter
Starting this release, the unoriented vector is treated as a column vector in numerator and
denominator coefficient ports.

17-9

https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.audiofilewriterclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.audiofilereaderclass.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/dsp.audiofilereaderclass.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/scope.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/xygraph.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2013a/dsp/ref/spectrumanalyzer.html
https://www.mathworks.com/help/releases/R2013a/rptgenext/index.html

NCO HDL Optimized block
The NCO HDL Optimized block provides hardware friendly control signals, optional reset port, and an
optional external dither input port. It also provides a reset function that resets the phase to its initial
value during the sinusoid output generation. In addition, it includes an option to output the internal
phase and hardware-friendly control signals including valid in and valid out.

HDLNCO System object
The dsp.HDLNCO System object, like the dsp.NCO System object, generates real or complex
sinusoidal signals. In addition, the NCO HDL-optimized System object provides hardware friendly
control signals, optional reset signal, and an optional external dither input signal.

HDL code generation for NCO HDL Optimized block and System object
Release R2013a provides HDL code generation support for the new NCO HDL Optimized block and
dsp.HDLNCO System object. To generate HDL code, you must have an HDL Coder license.

Support for nonpersistent System objects
You can now generate code for local variables that contain references to System objects. In previous
releases, you could not generate code for these objects unless they were assigned to persistent
variables.

New method for action when System object input size changes
The new processInputSizeChangeImpl method allows you to specify actions to take when an
input to a System object you defined changes size. If an input changes size after the first call to step,
the actions defined in processInputSizeChangeImpl occur when step is next called on that
object.

Scaled double data type support for System objects
System objects now support scaled double data types.

R2013a

17-10

R2012b

Version: 8.3

New Features

Compatibility Considerations

18

SpectrumAnalyzer System object
As of R2012b, DSP System Toolbox software provides a new Spectrum Analyzer System object that
enables you to view the power spectrum or power spectral density of signals. To create a Spectrum
Analyzer System object variable called h, at the MATLAB command prompt, type
h=dsp.SpectrumAnalyzer. The Spectrum Analyzer has several panels and dialog boxes that allow
you to perform the following operations:

• Spectrum Settings panel — The Spectrum Settings panel enables you to modify settings to
control the manner in which the spectrum is calculated. You can modify such parameters as
frequency span, resolution bandwidth, number of spectral averages, and number of FFT points.
You can also choose between a one-sided or two-sided spectrum and toggle normal, maximum
hold, and minimum hold trace views. To hide or display the Spectrum Settings panel, in the

Spectrum Analyzer toolbar, select the Spectrum Settings button (). Alternatively, in the
Spectrum Analyzer menu, select View > Spectrum Settings.

• Peak Finder panel — The Peak Finder panel displays maxima and the frequencies at which they
occur. These displays allow you to modify the settings for peak threshold, maximum number of

peaks, and peak excursion. In the Spectrum Analyzer toolbar, click the Peak Finder button ().
Alternatively, in the Spectrum Analyzer menu, select Tools > Measurements > Peak Finder.

• Properties dialog box — The Spectrum Analyzer provides a dialog box that allows you to control
the most common properties of a display, including the grid lines, titles, y-axis labels and y-axis
limits. To change options for a display, in the Spectrum Analyzer toolbar, click the Properties

button (). Alternately, in the Spectrum Analyzer menu, select View > Properties. You can also
right-click the display, and select Properties.

• Style dialog box — The Spectrum Analyzer allows you to customize the style of displays using a
Style dialog box. You can change the color of the figure containing the displays, the background
and foreground colors of display axes, and properties of lines in a display. To view or modify the
line style of the active signal, in the Spectrum Analyzer menu, select View > Style. You can also
right-click the display and select Style.

• Axes Scaling Options — The Spectrum Analyzer enables you with the ability to automatically scale
the axes to a specified range. In the Spectrum Analyzer menu, select Tools > Axes Scaling
Options to modify these settings. To manually scale the axes to the limits you specified, click the
Scale Axes Limits button ().

For more information, see the dsp.SpectrumAnalyzer System object reference topic.

Cross-platform support for reading and writing WAV, FLAC, OGG, MP3
(read only), MP4 (read only), and M4a (read only)
The dsp.AudioFileReader System object, and the From Multimedia File block, now support the
following audio file formats on all platforms:

• MP3
• MP4
• M4a
• WAV

R2012b

18-2

https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.spectrumanalyzerclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.audiofilereaderclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/frommultimediafile.html

• FLAC
• OGG

The dsp.AudioFileWriter System object, and the To Multimedia File block, now support the
following audio file formats on all platforms:

• WAV
• FLAC
• OGG

Support for code generation for CICDecimator and CICInterpolator
System objects
The following System objects now support code generation in MATLAB via the codegen command:

• dsp.CICDecimator
• dsp.CICInterpolator

To use the codegen function, you must have a MATLAB Coder license. See Use System Objects in
MATLAB Code Generation for more information.

Support for HDL code generation for multichannel Discrete FIR Filter
block
Discrete FIR Filter block accepts vector input and supports multichannel implementation for better
resource utilization.

• With vector input and channel sharing option on, the block supports multichannel fully parallel
FIR, including direct form FIR, sym/antisym FIR, and FIRT. Support for all implementation
parameters, for example: multiplier pipeline, add pipeline registers.

• With vector input and channel sharing option off, the block instantiates one filter implementation
for each channel. If the input vector size is N, N identical filters are instantiated.

For fully parallel architecture option for FIR filters only.

Time Scope enhancements, including new cursors, embedded
simulation controls, and External and Rapid Accelerator modes
As of R2012b, DSP System Toolbox provides the following enhancements to the Time Scope block and
the dsp.TimeScope System object:

• “Cursor measurements panel” on page 18-4
• “Additional embedded simulation controls” on page 18-4
• “Support for external mode and rapid accelerator mode” on page 18-4
• “Properties dialog box” on page 18-5
• “Axes Maximization” on page 18-5
• “Automatic calculation of Time Span” on page 18-5

18-3

https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.audiofilewriterclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/tomultimediafile.html
https://www.mathworks.com/help/releases/R2012b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.cicdecimatorclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.cicinterpolatorclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/gs/use-system-objects-for-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2012b/dsp/gs/use-system-objects-for-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.timescopeclass.html

• “ReduceUpdates property” on page 18-6
• “Support for conditional subsystems” on page 18-6

Cursor measurements panel

The Time Scope contains a new Cursor Measurements panel that shows cursors on all the Time
Scope displays. In the Settings pane, you may choose either waveform cursors, which are always
attached to the signal data, or screen cursors, which may be placed anywhere on the axes. The
Measurements pane shows the time, amplitude, and other calculated values at the locations of the

cursors. In the Time Scope toolbar, click the Cursor Measurements button (). Alternatively, in the
Time Scope menu, select Tools > Measurements > Cursor Measurements.

For more information, see the Time Scope block reference topic or the dsp.TimeScope System
object reference topic.

Additional embedded simulation controls

Effective in R2012b, additional embedded simulation controls are available through the Simulation
Toolbar and the Simulation Stepping Options dialog box. In previous releases, the Time Scope block
featured a Simulation Toolbar. With this toolbar, you could control the progression of increasing
simulation time from the Time Scope GUI by clicking the Run, Pause, Stop, and Next Step buttons. In
R2012b, the Simulation Stepping Options dialog box provides you with the ability to further control
the simulation behavior. This dialog box allows you to enable the button on the Simulation Toolbar to
take a Previous Step. Additionally, you can pause the simulation at a specified time, specify previous
stepping options, and modify the number of steps for forward and backward movement. To access
these controls, from the Time Scope menu, select Simulation > Stepping Options. Alternatively, if
previous stepping is disabled, in the Time Scope toolbar, click the Previous Step button. The
Simulation Stepping Options dialog box appears.

You can enable Time Scope to show a Previous Step button (), which allows you to move the
simulation time backward by one time step. In the Simulation Stepping Options dialog box, in the
Previous stepping options group, select the Enable Previous Stepping check box. To test this
feature, first run the simulation, and then pause the simulation. When the simulation is paused, you
can now click the Previous Step button to regress the simulation back by one time step.

Note This feature is available for the Time Scope block but not for the dsp.TimeScope System
object.

For more information, see the Time Scope block reference topic.

Support for external mode and rapid accelerator mode

As of R2012b, the Time Scope block supports two additional simulation modes in Simulink, External
mode and Rapid Accelerator mode. You can use External mode to tune block parameters in real time
and view block outputs in many types of blocks and subsystems. External mode establishes
communication between a host system, where the Simulink environment resides, and a target system,
where the executable runs after it is generated by the code generation and build process. For more
information about External mode, see Host/Target Communication in the Simulink Coder product
documentation.

You can use Rapid Accelerator mode as a method to increase the execution speed of your Simulink
model. Rapid Accelerator mode creates an executable that includes the solver and model methods.

R2012b

18-4

https://www.mathworks.com/help/releases/R2012b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012b/rtw/host-target-communication.html

This executable resides outside of MATLAB and Simulink. Rapid Accelerator mode uses External
mode to communicate with Simulink. For more information about Rapid Accelerator mode, see
Acceleration in the Simulink product documentation.

Note This feature is available for the Time Scope block but not for the dsp.TimeScope System
object.

For more information about Time Scope, see the Time Scope block reference topic.

Properties dialog box

As of R2012b, the Time Scope block provides a centralized location where you can modify the most
important properties of a display. The Properties dialog box contains the most frequently modified
Time Scope settings, including all the parameters from the Tools:Plot Navigation Options dialog box
and the Visuals:Time Domain Options dialog box. It also includes Open at Start of Simulation and
Number of Input Ports from the File menu. To open this dialog box, in the Time Scope toolbar, click

the Properties button (). Alternately, in the Time Scope menu, select View > Properties. You can
also right-click on the display and select Properties.

Note This feature is available for the Time Scope block but not for the dsp.TimeScope System
object. In the dsp.TimeScope System object GUI, when you select View > Properties, the
Visuals:Time Domain Options dialog box appears, as in R2012a. This same dialog box also appears
when you right-click on the display and select Properties.

For more information about Time Scope, see the Time Scope block reference topic.

Axes Maximization

In R2012b, you can specify whether to display the Time Scope block or System object in maximized
axes mode. In this mode, the axes are expanded to fill the entire display. In each display, there is no
space to show titles or axis labels. The values at the axis tick marks appear on top of the axes. You
can select one of the following options:

• Auto — In this mode, the axes appear maximized in all displays only if the Title and Y-Axis label
parameters are empty for every display. If you enter any value in any display for either of these
parameters, the axes are not maximized.

• On — In this mode, the axes appear maximized in all displays. Any values entered into the Title
and Y-Axis label parameters are hidden.

• Off — In this mode, none of the axes appear maximized.

The default setting is Auto. In the Time Scope GUI, you can set this property in the Main pane of the
Properties dialog box. To change options using the dsp.TimeScope System object, set the
MaximizeAxes property to the intended option. For more information, see the Time Scope block
reference topic or the dsp.TimeScope System object reference topic.

Automatic calculation of Time Span

As of R2012b, the Time Scope block can automatically calculate the Time Span parameter using the
simulation Start Time and Stop Time parameters. By default, the Time Scope block has the Time

18-5

https://www.mathworks.com/help/releases/R2012b/simulink/acceleration.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.timescopeclass.html

Span parameter set to Auto calculate. To modify the Time Span parameter to use a different value,
open the Properties dialog box and click the Time tab.

Note This feature is available for the Time Scope block but not for the dsp.TimeScope System
object.

For more information about Time Scope, see the Time Scope block reference topic.

ReduceUpdates property

As of R2012b, the Time Scope System object has an additional property called ReduceUpdates. By
default, this property is set to true. When this property is true, the Time Scope updates the displays
at a rate not exceeding 20 hertz. When you set this property to false, the Time Scope updates every
time the step method is called. The simulation speed is faster when this property is set to true.
Using this property is equivalent to selecting the Reduce Updates to Improve Performance check
box in the Simulation menu of the Time Scope GUI.

For more information about this property, see the dsp.TimeScope System object reference topic.

Support for conditional subsystems

In previous releases, the Time Scope block could be used within an enabled subsystem. As of R2012b,
the Time Scope block can also be placed in a triggered subsystem, an enabled and triggered
subsystem, and a function-call subsystem. For more information about these types of subsystems, see
Conditional Subsystems in the Simulink documentation.

Note This feature is available for the Time Scope block but not for the dsp.TimeScope System
object.

For more information about Time Scope, see the Time Scope block reference topic.

Source and sink blocks being replaced
The following Windows platform blocks now map to other existing blocks that work on all platforms:

Deprecated blocks Blocks mapped to
From Wave Device From Audio Device
To Wave Device To Audio Device
From Wave File From Multimedia File
To Wave File To Multimedia File

This mapping is transparent; no slupdate is needed. When you open an existing model that contains
the original blocks, the replacement blocks are automatically substituted. If you save the model, the
replacement blocks are saved instead of the original blocks.

Compatibility Considerations
Because mapped blocks do not have identical functionality, incompatibilities can be introduced in
certain cases. The From Wave File can have an optional start-of-file indicator port, whereas the

R2012b

18-6

https://www.mathworks.com/help/releases/R2012b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012b/toolbox/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2012b/simulink/conditional-subsystems-1.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/fromaudiodevice.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/toaudiodevice.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/frommultimediafile.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/tomultimediafile.html
https://www.mathworks.com/help/releases/R2012b/simulink/slref/slupdate.html

From Multimedia File cannot. Therefore, if you load an old model where From Wave File has the
start-of-file port, a broken link results. In this case, a warning message appears, providing a
link to start_of_file_example, which shows you how to correct the problem.

Discrete IIRFilter and AllpoleFilter System objects
This release introduces a discrete IIR Filter System object dsp.IIRFilter and a discrete Allpole
Filter System object dsp.AllpoleFilter.

The IIR Filter System object implements the algorithm, inputs, and outputs described on the Discrete
Filter block reference page. The object properties correspond to the block parameters. Both this
object and its corresponding block let you specify whether to process inputs as individual samples or
as frames of data. This System object supports code generation.

The Allpole Filter System object implements the algorithm, inputs, and outputs described on the
Allpole Filter block reference page. The object properties correspond to the block parameters. Both
this object and its corresponding block let you specify whether to process inputs as individual
samples or as frames of data. This System object supports code generation.

Support for MATLAB Compiler for CICDecimator and CICInterpolator
System objects
The following System objects are now supported by MATLAB Compiler™:

• dsp.CICDecimator
• dsp.CICInterpolator

For more information, see Using System Objects with MATLAB Compiler.

Code generation support for SignalSource System object
dsp.SignalSource now support code generation in MATLAB via the codegen command:To use the
codegen function, you must have a MATLAB Coder license. See Use System Objects in MATLAB
Code Generation for more information.

Behavior change of locked System objects for loading, saving, and
cloning
In the previous release, saving, loading, and cloning a locked System object would result in an
unlocked System object. This System object had the same property values as the one from which it
was cloned, but not the same internal state.

In this release, it does not matter whether you save a locked System object into a MAT file and load it
later or clone a locked System object using the clone method. In either case, the result is a locked
System object with the same property values and the same internal states.

There are, however, a few exceptions. For the following System objects, if you call the clone method,
the resulting System object is not locked, but if you save or load the System object into and from a
MAT file, the result is a locked System object.

18-7

https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.iirfilterclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.allpolefilterclass.html
https://www.mathworks.com/help/releases/R2012b/simulink/slref/discretefilter.html
https://www.mathworks.com/help/releases/R2012b/simulink/slref/discretefilter.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/allpolefilter.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.cicdecimatorclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.cicinterpolatorclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.signalsourceclass.html
https://www.mathworks.com/help/releases/R2012b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2012b/dsp/gs/use-system-objects-for-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2012b/dsp/gs/use-system-objects-for-code-generation-from-matlab.html

• dsp.MatFileWriter
• dsp.AudioRecorder
• dsp.AudioPlayer

Thus, for the above System objects, if you call the clone method, you get an unlocked System object
with the same property values.

Another exception involves the following System objects:

• dsp.AudioFileWriter
• dsp.AudioFileReader

For these System objects, if you save a locked System object to a MAT file and load it later, you get an
unlocked System object with the same property values. However you do not get the same internal
states. This behavior is the same as in the previous release.

Behavior change of statistics blocks for variable-size inputs
When the inputs are of variable size, the running mode behavior of the following blocks has changed:

• Mean
• RMS
• Variance
• Standard Deviation
• Minimum
• Maximum

If the Input processing parameter is set to Elements as channels (sample based), the block
state is reset when any input dimension changes.

If the Input processing parameter is set to Columns as channels (frame based), then the
behavior depends on two options:

• When the number of input channels (i.e., number of columns) changes, the block state is reset to
its initial condition.

• When the number of input channels remains the same, there is no reset, even if the channel
length (i.e., number of rows) changes.

Simulation state save and restore for additional blocks
In this release, there are additional blocks that support simulation state save and restore. These are:

• Cumulative Sum
• Cumulative Product
• Mean
• Variance
• RMS
• Standard Deviation

R2012b

18-8

https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.matfilewriterclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.audiorecorderclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.audioplayerclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.audiofilewriterclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.audiofilereaderclass.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/mean.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/rms.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/variance.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/standarddeviation.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/minimum.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/maximum.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/cumulativesum.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/cumulativeproduct.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/mean.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/variance.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/rms.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/standarddeviation.html

• Queue
• Stack

Note The Queue and Stack blocks do not support SimState save and restore in dynamic memory
allocation mode.

For more information on simulation state save and restore, see Save and Restore Simulation State as
SimState.

For Each subsystem support for additional blocks
In this release, most DSP blocks have been updated to support the For Each subsystem. For details
about the For Each subsystem, see For Each. For a list of supported blocks, see the For Each
Subsystem Support column in the table titled Simulink Block Data Type Support for DSP System
Toolbox. This table can be accessed by typing showsignalblockdatatypetable at the command
line.

Multi-instance model referencing support for additional blocks
In this release, most DSP blocks have been updated to support multi-instance normal mode model
referencing. For details about model referencing, see Model Reference. The blocks that support
model referencing are the same blocks that support the For Each subsystem. Therefore for a list of
supported blocks, see the For Each Subsystem Support column in the table titled Simulink Block Data
Type Support for DSP System Toolbox. This table can be accessed by typing
showsignalblockdatatypetable at the command line.

Expanded analysis support for filter System objects
In the previous release, the filter analysis methods for dfilt and mfilt objects were extended to
filter System objects. This release expands the number of supporting analysis methods to include the
following:

• noisepsd
• noisepsdopts
• freqrespest
• freqrespopts

For a comprehensive list of supported analysis methods, see Analysis Methods for Filter System
Objects.

Removal of the signalblks package
In this release, the signalblks package is being removed and any instantiation of a signalblks
object causes an error message. In future releases, the functionality will be removed entirely, so you
should now use the corresponding object in the DSP System Toolbox.

18-9

https://www.mathworks.com/help/releases/R2012b/dsp/ref/queue.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/stack.html
https://www.mathworks.com/help/releases/R2012b/simulink/ug/saving-and-restoring-the-simulation-state-as-the-simstate.html
https://www.mathworks.com/help/releases/R2012b/simulink/ug/saving-and-restoring-the-simulation-state-as-the-simstate.html
https://www.mathworks.com/help/releases/R2012b/simulink/slref/foreach.html
https://www.mathworks.com/help/releases/R2012b/simulink/model-reference.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/dfilt.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/mfilt.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/noisepsd.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/noisepsdopts.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/freqrespest.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/freqrespopts.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/table-of-analysis-methods-for-filter-system-objects.html
https://www.mathworks.com/help/releases/R2012b/dsp/ref/table-of-analysis-methods-for-filter-system-objects.html

Discrete filter block visible in DSP library
In addition to accessing the Discrete Filter block from the Simulink library, you can now also access it
from the DSP System Toolbox library.

System object tunable parameter support in code generation
You can change tunable properties in user-defined System objects at any time, regardless of whether
the object is locked. For System objects predefined in the software, the object must be locked. In
previous releases, you could tune System object properties only for a limited number of predefined
System objects in generated code.

save and load methods for System objects
You can use the save method to save System objects to a MAT file. If the object is locked, its state
information is saved, also. You can recall and use those saved objects with the load method.

You can also create your own save and load methods for a System object you create. To do so, use
the saveObjectImpl and loadObjectImpl, respectively, in your class definition file.

Save and restore SimState not supported for System objects
The Save and Restore Simulation State as SimState option is no longer supported for any System
object in a MATLAB Function block. This option was removed because it prevented parameter
tunability for System objects, which is important in code generation.

Compatibility Considerations
If you need to save and restore simulation states, you may be able to use a corresponding Simulink
block, instead of a System object.

Map integer delay to RAM on Delay block
UseRAM is a block-level parameter on the IntegerDelay block that you access with the HDL Block
properties GUI. You assign it an On or Off value:

• On: Map the integer delay to a RAM. On is not a guarantee that a RAM is inferred: if all conditions
are met (including the threshold criteria), only then is the RAM inferred.

• Off: The integer delay is always mapped to registers.

HDL support for System objects
HDL support for the following System objects has been added with release R2012b:

• dsp.BiquadFilter

HDL resource sharing for Biquad Filter block
HDL support for second-order section, direct-form I and second-order section, direct-form II filter
structures has been added with release R2012b.

R2012b

18-10

https://www.mathworks.com/help/releases/R2012b/dsp/ref/dsp.biquadfilterclass.html

Supported architectures:

• Fully Parallel ('default' interface)

AddPipelineRegisters, ConstrainedOutputPipeline, CoeffMultipliers, InputPipeline, OutputPipeline
• Fully Serial

ConstrainedOutputPipeline, InputPipeline, OutputPipeline
• Partly Serial

ConstrainedOutputPipeline, InputPipeline, OutputPipeline, ArchitectureSpecifiedBy, FoldingFactor,
NumMultipliers

18-11

R2012a

Version: 8.2

New Features

Bug Fixes

Compatibility Considerations

19

Frame-Based Processing
Beginning in R2010b, MathWorks has been significantly changing the handling of frame-based
processing. For more information, see “Frame-Based Processing” on page 20-2 in the R2011b
Release Notes.

The following sections provide more detailed information about the specific R2012a DSP System
Toolbox software changes that are helping to enable the transition to the new paradigm for frame-
based processing:

• “Inherited Option of the Input Processing Parameter Now Warns” on page 19-2
• “Logging Frame-Based Signals in Simulink” on page 19-3
• “Model Reference and Using slupdate” on page 19-3
• “Removing Mixed Frameness Support for Bus Signals on Unit Delay and Delay” on page 19-4
• “Audio Output Sampling Mode Added to the From Multimedia File Block” on page 19-4

Inherited Option of the Input Processing Parameter Now Warns

Some DSP System Toolbox blocks are able to process both sample- and frame-based signals. After the
transition to the new way of handling frame-based processing, signals will no longer carry
information about their frame status. Blocks that can perform both sample- and frame-based
processing will have a new parameter that allows you to specify the appropriate processing behavior.

To prepare for this change, many blocks received a new Input processing parameter in previous
releases. You can set this parameter to Columns as channels (frame based) or Elements as
channels (sample based), depending upon the type of processing you want. The third choice,
Inherited (this choice will be removed - see release notes), is a temporary
selection that is available to help you migrate your existing models from the old paradigm of frame-
based processing to the new paradigm.

In this release your model will warn when the following conditions are all met for any block in your
model:

• The Input processing parameter is set to Inherited (this choice will be removed -
see release notes).

• The input signal is sample based.
• The input signal is a vector, matrix, or N-dimensional array.

Compatibility Considerations
To eliminate this warning, you must upgrade your existing models using the slupdate function. The
function detects all blocks that have Inherited (this choice will be removed - see
release notes) selected for the Input processing parameter. It then asks you whether you would
like to upgrade each block. If you select yes, the function detects the status of the frame bit on the
input port of the block. If the frame bit is 1 (frames), the function sets the Input processing
parameter to Columns as channels (frame based). If the bit is 0 (samples), the function sets
the parameter to Elements as channels (sample based).

In a future release, the frame bit and the Inherited (this choice will be removed - see
release notes) option will be removed. At that time, the Input processing parameter in models
that have not been upgraded will automatically be set to either Columns as channels (frame

R2012a

19-2

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

based) or Elements as channels (sample based). The option set will depend on the library
default setting for each block. If the library default setting does not match the parameter setting in
your model, your model will produce unexpected results. Additionally, after the frame bit is removed,
you will no longer be able to upgrade your models using the slupdate function. Therefore, you
should upgrade your existing modes using slupdate as soon as possible.

Logging Frame-Based Signals in Simulink

In this release, a new warning message appears when a Simulink model is logging frame-based
signals and the Signal logging format is set to ModelDataLogs. In ModelDataLogs mode, signals
are logged differently depending on the status of the frame bit, as shown in the following table:

Status of Frame Bit Today When Frame Bit Is Removed
Sample-based 3-D array with samples in time

in the third dimension
3-D array with samples in time
in the third dimension

Frame-based 2-D array with frames in time
concatenated in the first
dimension

3-D array with samples in time
in the third dimension

This warning advises you to switch your Signal logging format to Dataset. The Dataset logging
mode logs all 2-D signals as 3-D arrays, so its behavior is not dependent on the status of the frame
bit.

When you get the warning message, to continue logging signals as a 2-D array:

1 Select Simulation > Model Configuration Parameters > Data Import/Export, and change
Signal logging format to Dataset. To do so for multiple models, click on the link provided in
the warning message.

2 Simulate the model.
3 Use the dsp.util.getLogsArray function to extract the logged signal as a 2-D array.

Model Reference and Using slupdate

In this release, the Model block has been updated so that its operation does not depend on the frame
status of its input signals.

Compatibility Considerations
In a future release, signals will not have a frameness attribute, therefore models that use the Model
block must be updated to retain their behavior. If you are using a model with a Model block in it,
follow the steps below to update your model:

1 For both the child and the parent models:

• In the Model Configuration Parameters dialog box, select the Diagnostics >
Compatibility pane.

• Change the Block behavior depends on input frame status parameter to warning.
2 For both the child and the parent models, run slupdate.
3 For the child model only:

• In the Model Configuration Parameters dialog box, select the Diagnostics >
Compatibility pane.

19-3

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

• Change the Block behavior depends on input frame status parameter to error.

Removing Mixed Frameness Support for Bus Signals on Unit Delay and Delay

This release phases out support for buses with mixed sample- and frame-based elements on
Simulink’s Unit Delay and Delay blocks. Support is also removed from the DSP System Toolbox’s
Delay block. When the frame bit is removed in a future release, any Delay block that has a bus input
of mixed frameness will produce different results.

Compatibility Considerations
This incompatibility is phased over multiple releases. In 2012a, the blocks will produce a warning
message. In a future release, when the frame bit is removed, the blocks will produce an error
message.

Audio Output Sampling Mode Added to the From Multimedia File Block

The From Multimedia File block now provides a new parameter. This parameter allows you to select
frame- or sample-based audio output processing.

System Object Enhancements
• “Code Generation for System Objects” on page 19-4
• “New MAT-File Reader and Writer System Objects” on page 19-4
• “New System Object Option on File Menu” on page 19-4
• “Variable-Size Input Support for System Objects” on page 19-4
• “Data Type Support for System Objects” on page 19-5
• “New Property Attribute to Define States” on page 19-5
• “New Methods to Validate Properties and Get States from System Objects” on page 19-5
• “matlab.system.System changed to matlab.System” on page 19-5

Code Generation for System Objects

System objects defined by users now support C code generation. To generate code, you must have the
MATLAB Coder product.

New MAT-File Reader and Writer System Objects

R2012a adds two new System objects, dsp.MatFileReader and dsp.MatFileWriter. These
System objects stream data into and out of MAT-files.

New System Object Option on File Menu

The File menu on the MATLAB desktop now includes a New > System object menu item. This option
opens a System object class template, which you can use to define a System object class.

Variable-Size Input Support for System Objects

System objects that you define now support inputs that change size at run time.

R2012a

19-4

Data Type Support for System Objects

System objects that you define now support all MATLAB data types as inputs and outputs.

New Property Attribute to Define States

R2012a adds the new DiscreteState attribute for properties in your System object class definition
file. Discrete states are values calculated during one step of an object’s algorithm that are needed
during future steps.

New Methods to Validate Properties and Get States from System Objects

The following methods have been added:

• validateProperties – Checks that the System object is in a valid configuration. This applies
only to objects that have a defined validatePropertiesImpl method.

• getDiscreteState – Returns a struct containing System object properties that have the
DiscreteState attribute.

matlab.system.System changed to matlab.System

The base System object class name has changed from matlab.system.System to matlab.System.

Compatibility Considerations
The previous matlab.system.System class will remain valid for existing System objects. When you
define new System objects, your class file should inherit from the matlab.System class.

Time Scope Enhancements
• “Time Domain Measurements in Time Scope” on page 19-5
• “Multiple Display Support in Time Scope” on page 19-6
• “Style Dialog Box in Time Scope” on page 19-6
• “Sampled Data as Stairs in Time Scope” on page 19-6
• “Complex Data Support in Time Scope” on page 19-7
• “Additional Time Scope Enhancements” on page 19-7

Time Domain Measurements in Time Scope

As of R2012a, the Time Scope block and System object support the time domain signal measurements
Signal statistics, Bilevel measurements, and Peak finder. The Signal Statistics panel displays
the maximum, minimum, peak-to-peak difference, mean, median, and RMS values of a selected signal.
It also displays the times at which the maximum and minimum values occur. The Bilevel
Measurements panel displays information about a selected signal’s transitions, overshoots or
undershoots, and cycles. The Peak Finder panel displays maxima and the times at which they occur.
These displays allow you to modify the settings for peak threshold, maximum number of peaks, and
peak excursion.

To use the new time domain measurements features in the Time Scope block, click one of the three
corresponding buttons in the Time Scope toolbar. You can also access these panels by selecting
Measurements from the Tools menu.

19-5

See the Time Scope reference topic for more information.

Multiple Display Support in Time Scope

R2012a allows you to choose to have multiple displays in the Time Scope, using both the block and
the System object. This feature allows you to tile your screen into a number of separate displays, up
to a grid of 4 rows and 4 columns. You may find multiple displays useful when the Time Scope takes
multiple input signals.

To set the number of displays on the Time Scope, click the layout button in the Time Scope toolbar.
You can also select Layout from the View menu. To set the number of displays using the
dsp.TimeScope System object, set the LayoutDimensions property.

To change options for a display, select Properties from the View menu. Select the Display tab, and
use the menu to select the display you want to update. You can also right-click on the axes, and select
Properties. To change options using the dsp.TimeScope System object, set the ActiveDisplay
property to the intended display number.

See the Time Scope reference topic for more information.

Style Dialog Box in Time Scope

R2012a enhances the Time Scope block and System object by allowing you to customize the style of
displays using a Style dialog box. You are able to change the color of the figure containing the
displays, the background and foreground colors of display axes, and properties of lines in a display.

The Style dialog box replaces the Line Properties menu item that was used in previous releases for
customizing line properties. To open the Style dialog box, select Style from the View menu.

Note This release changes the Time Scope default axes and line colors. The Time Scope initially
displays the axes as black instead of white, as shown in previous releases. For a real, single-channel
signal, Time Scope now displays a yellow line instead of a blue line. Models containing Time Scope
blocks that were created using older versions of DSP System Toolbox will not be affected by this
change.

See the Time Scope reference topic for more information.

Sampled Data as Stairs in Time Scope

In previous releases, the Time Scope plotted a sampled signal as lines connecting each of the
sampled values. This approach is similar to the functionality of the MATLAB line or plot function.
In R2012a, the Time Scope block and System object can also plot a sampled signal as horizontal lines.
These lines represent a sample value for a discrete sample period connected by vertical lines to
represent a change in values occurring at each new sample. This type of plot is commonly called a
Stairstep graph and has functionality similar to that of the MATLAB stairs function. Stairstep
graphs are useful for drawing time history graphs of digitally sampled data.

To display a sampled signal as a Stairstep graph, first select Style from the View menu. The Style
dialog box opens, allowing you to set the Plot type drop down box to Stairs. The three options
available are Line, Stairs, and Auto. If using the dsp.TimeScope System object, set the
PlotType property to the string 'stairs'.

See the Time Scope reference topic for more information.

R2012a

19-6

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html

Complex Data Support in Time Scope

Beginning in this release, the Time Scope block and System object will support complex data input.
The complex data is displayed by default in real and imaginary form as differently colored lines on the
same axes. Alternately, you can display the magnitude and phase of the signal on separate axes in the
same display.

To change the complex data options in the Time Scope display, select Properties from the View
menu. Then, select or deselect the Plot signals as magnitude and phase check box. You can also
right-click on the axes and select Properties. To change these properties using the dsp.TimeScope
System object, set the MagnitudePhase property to either true or false.

See the Time Scope reference topic for more information.

Additional Time Scope Enhancements

In additional to the modifications mentioned above, R2012a also includes the following enhancements
to the Time Scope:

Ability to Change the Time Units of the Display

In previous releases Time Scope always displayed time in metric units. In R2012a, the Time Scope
block and System object allow you to label the X-axis in two additional ways. First, you can ensure
that the X-axis is always labeled as Time (seconds) and that the appropriate power of 10 appears
in the bottom-right corner of the Time Scope display. Second, you can remove the units in the X-axis
label entirely.

To change the manner in which the time units are displayed, select Properties from the View menu.
Then, set the Time Units parameter to either Seconds or None. The default option is Metric
(based on Time Span). To change these properties using the dsp.TimeScope System object, set
the TimeUnits property to either Seconds or None. The default property value is Metric.

See the Time Scope reference topic for more information.

Simulink Enumerations Supported in Time Scope Block

In previous releases, the Time Scope block supported input signals of floating-point and fixed-point
data types. R2012a adds support for Simulink enumerated data types.

Note This feature is available only for the Time Scope block but not for the Time Scope System
object. Also, support is provided only for Simulink enumerations, but not for generic MATLAB
enumeration classes.

See the Time Scope reference topic for more information.

ASIO Support in To/From Audio Device Blocks and Objects
The To and From Audio Device blocks and the dsp.AudioPlayer and dsp.AudioRecorder system objects
all now support ASIO as an API. ASIO is used to communicate with the audio hardware. To set ASIO
as the Audio Hardware API, select Preferences from the MATLAB Toolstrip. Then select DSP System
Toolbox from the tree menu. If the ASIO selection is disabled, it is due to the ASIO device not being
connected.

19-7

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html

Video Processing Enabled for the DSP System Toolbox Multimedia File
Blocks
The To Multimedia File and From Multimedia File blocks no longer require a Computer Vision System
Toolbox license for video processing. You can use the DSP From Multimedia File block to read video
and the To Multimedia File block to write video files.

System Objects Integrated into Filter Design Workflow
• “Integration of System Objects into Filter Design via fdesign, FDATool, and Filterbuilder”

on page 19-8
• “Convert dfilt and mfilt Filter Objects to System Objects” on page 19-8
• “Filter Analysis and Conversion Methods for System Object Filters” on page 19-8

Integration of System Objects into Filter Design via fdesign, FDATool, and Filterbuilder

In R2012a, you can use the fdesign workflow and interactive tools, fdatool and filterbuilder,
to create IIR, FIR, and multirate System object filters.

Using the interactive tools, you can generate MATLAB code to construct a System object filter. You
can also generate MATLAB code to filter data with your System object that is compatible with C/C++
code generation. C/C++ code generation requires the MATLAB Coder software.

Convert dfilt and mfilt Filter Objects to System Objects

In R2012a, you can convert dfilt and mfilt objects to System objects. Use the sysobj method to
convert an existing dfilt or mfilt object to a System object. Refer to the command-line help for
dfilt.sysobj and mfilt.sysobj for details on supported single-rate and multirate filter
structures.

Filter Analysis and Conversion Methods for System Object Filters

The R2012a release extends filter analysis and conversion methods for dfilt and mfilt objects to
System object filters. For System object filters, you can examine the filter magnitude, impulse, step,
zero phase, group delay, and phase responses. You can also view a pole-zero plot of your filter’s z-
transform.

Additionally, you can obtain detailed measurements and implementation costs for your System object
filter. For System object filters, you can determine if the phase response is linear. For FIR linear-
phase filters, you can determine the type of linear phase. You can also assess the stability of your
filter design and whether your design represents a minimum-phase or maximum-phase system.

To obtain a comprehensive list of supported methods and links to the command-line help, enter

 dsp.SystemObjectFilter.helpFilterAnalysis

at the command line, where SystemObjectFilter is a specific System object filter class name. For
example:

dsp.BiquadFilter.helpFilterAnalysis

R2012a

19-8

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdatool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/mfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/mfilt.html

New Measurement Workflow
• “Measurements for Bilevel Pulse Waveforms” on page 19-9
• “System Objects for Peak-to-RMS and Peak-to-Peak Measurements” on page 19-9

Measurements for Bilevel Pulse Waveforms

The R2012a release introduces System objects that perform a number of basic measurements on
bilevel pulse waveforms. These measurements include:

• State-level estimation for bilevel pulse waveforms using the histogram method. See the help for
dsp.StateLevels for details.

• Transition metrics for bilevel pulse waveforms. The System object, dsp.TransitionMetrics,
determines low-, middle-, and high-reference level crossings and also duration and slew rate. You
can also use dsp.TransitionMetrics to measure the behavior of bilevel waveforms in
pretransition and posttransition regions such as overshoot, undershoot, and settling time.

Using dsp.PulseMetrics, you can measure transition rise and fall times. dsp.PulseMetrics
contains a superset of the capabilities found in dsp.TransitionMetrics.

• Cycle metrics for bilevel pulse waveforms. You can use dsp.PulseMetrics to measure pulse
width, pulse separation, pulse period, and duty cycle.

System Objects for Peak-to-RMS and Peak-to-Peak Measurements

The R2012a release introduces System objects to measure the root-mean-square (RMS) value of a
waveform. These System objects also measure the peak-to-RMS and peak-to-peak values. For details,
see the reference pages for dsp.RMS, dsp.PeakToRMS, and dsp.PeakToPeak.

Discrete FIR Filter System Object
This release introduces a discrete FIR Filter System object, which filters each channel of the input
using static or time-varying FIR filter implementations. This System object implements the algorithm,
inputs, and outputs described on the Discrete FIR Filter block reference page. The object properties
correspond to the block parameters. Both this object and its corresponding block let you specify
whether to process inputs as individual samples or as frames of data. The object uses the
FrameBasedProcessing property. The block uses the Input processing parameter. This System
object supports code generation.

Inverse Dirichlet Sinc-Shaped Passband Design Added to Constrained
FIR Equiripple Filter
The R2012a release adds the ability to design a constrained FIR equiripple filter with an inverse-
Dirichlet-sinc-shaped passband using firceqrip. An inverse-Dirichlet-sinc-shaped response is often
used to compensate for the Dirichlet-sinc-shaped response of a cascade integrator comb (CIC) filter.
An inverse-sinc-shaped response is a valid approximation to the response of a CIC filter only when the
sampling rate change is sufficiently high. The Dirichlet sinc provides a more exact match to the
response of a CIC filter.

19-9

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.statelevelsclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.transitionmetricsclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.pulsemetricsclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.pulsemetricsclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.rmsclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.peaktormsclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.peaktopeakclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.firfilterclass.html#dsp.FIRFilter.FrameBasedProcessing
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/firceqrip.html

Code Generation Support Added to FIR Decimator System Object
In this release, FIR Decimator has been added to the list of objects that can now support code
generation in MATLAB via the codegen function.

Filter Block Enhancements
• “IC/Coefficient Parameter Ports in the Simulink Discrete Filter and Discrete Transfer Function”

on page 19-10
• “Reset Port for Resetting Filter State in Filter Blocks” on page 19-10

IC/Coefficient Parameter Ports in the Simulink Discrete Filter and Discrete Transfer
Function

The Simulink Discrete Filter and Discrete Transfer Function blocks now have the capability of
specifying the numerator and denominator coefficients via either input parameter ports or block
dialog boxes. Also, the initial filter states can be specified via an input parameter port or a block
dialog box.

Reset Port for Resetting Filter State in Filter Blocks

The Simulink Discrete Filter and Discrete Transfer Function blocks now allow the filter states to be
reset via a reset parameter port called External reset.

Discrete FIR Filter Block Coefficient Port Changes
In this release, if you feed a column vector input into the coefficient port of the Discrete FIR Filter
block, the block issues a command-line warning. This warning will state that column vector inputs to
the coefficient port are not supported and that you will see an error message in future releases.

Compatibility Considerations
You are advised to run slupdate to insert a reshape block and transpose the input from a column
vector to a row vector.

Statistics Blocks and Objects Warning for Region of Interest
Processing
ROI processing will be removed in a future release. Currently, ROI processing is available only if you
have a Computer Vision System Toolbox license. If you do not have a license for that product, you can
still use ROI processing, but you are limited to the use of ROI type rectangles.

Compatibility Considerations
When you use region of interest (ROI) processing, MATLAB will issue a warning. ROI processing will
be removed in a future release.

New and Updated Demos
R2012a adds the following new demo:

R2012a

19-10

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

Using System Objects with MATLAB Coder — Shows you how to use the MATLAB Coder
product to generate code for a MATLAB file that uses System objects.

Additionally, this release updates the Arbitrary Magnitude Filter Design demo to include
examples that showcase the new capabilities of the arbitrary magnitude filter design.

19-11

R2011b

Version: 8.1

New Features

Bug Fixes

Compatibility Considerations

20

Frame-Based Processing
In signal processing applications, you often need to process sequential samples of data at once as a
group, rather than one sample at a time. DSP System Toolbox documentation refers to the former as
frame-based processing and the latter as sample-based processing. A frame is a collection of samples
of data, sequential in time.

Historically, Simulink-family products that can perform frame-based processing propagate frame-
based signals throughout a model. The frame status is an attribute of the signals in a model, just as
data type and dimensions are attributes of a signal. The Simulink engine propagates the frame
attribute of a signal by means of a frame bit, which can either be on or off. When the frame bit is on,
Simulink interprets the signal as frame based and displays it as a double line, rather than the single
line sample-based signal.

General Product-Wide Changes

Beginning in R2010b, MathWorks® started to significantly change the handling of frame-based
processing. In the future, frame status will no longer be a signal attribute. Instead, individual blocks
will control whether they treat inputs as frames of data or as samples of data. To learn how a
particular block handles its input, you can refer to the block reference page.

To make the transition to the new paradigm of frame-based processing, many blocks have received
new parameters. You can view an example of how to use these parameters to control sample- and
frame-based processing in R2011b and future releases. To open the model, type ex_inputprocessing
at the MATLAB command line. This model demonstrates how a block can process a signal as sample
based or frame based, depending on the setting of that block's Input processing parameter.

Notice that when the Discrete FIR Filter and Time Scope blocks are configured to perform frame-
based processing, they interpret columns as channels and treat the 2-by-2 input signal as two
independent channels. Conversely, when the blocks are configured to perform sample-based
processing, they interpret elements as channels and treat the 2-by-2 input signal as four independent
channels. For further information about sample- and frame-based processing, see Sample- and
Frame-Based Concepts.

The following sections provide more detailed information about the specific R2011b DSP System
Toolbox software changes that are helping to enable the transition to the new way of frame-based
processing:

• “Logging Signals in Simulink” on page 20-3
• “Triggered to Workspace” on page 20-3
• “Digital Filter Design Block” on page 20-4
• “Filterbuilder, FDATool and the Filter Realization Wizard Block” on page 20-5
• “Changes to Row Vector Processing for dsp.Convolver, dsp.CrossCorrelator, and dsp.Interpolator

System Objects” on page 20-5

Compatibility Considerations
During this transition to the new way of handling frame-based processing, both the old way (frame
status as an attribute of a signal) and the new way (each block controls whether to treat inputs as
samples or as frames) will coexist for a few releases. For now, the frame bit will still flow throughout
a model, and you will still see double signal lines in your existing models that perform frame-based
processing.

R2011b

20-2

matlab:ex_inputprocessing
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ug/bso3pkj.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ug/bso3pkj.html

• Backward Compatibility — By default, when you load an existing model in R2011b any new
parameters related to the frame-based processing change will be set to their backward-compatible
option. For example, if any blocks in your existing models received a new Input processing
parameter this release, that parameter will be set to Inherited (this choice will be
removed - see release notes) when you load your model in R2011b. This setting enables
your existing models to continue working as expected until you upgrade them. Because the
inherited option will be removed in a future release, you should upgrade your existing models as
soon as possible.

• slupdate Function — To upgrade your existing models to the new way of handling frame-based
processing, you can use the slupdate function. Your model must be compilable in order to run
the slupdate function. The function detects all blocks in your model that are in need of updating,
and asks you whether you would like to upgrade each block. If you select yes, the slupdate
function updates your blocks accordingly.

• Timely Update to Avoid Unexpected Results — It is important to update your existing models
as soon as possible because the frame bit will be removed in a future release. At that time, any
blocks that have not yet been upgraded to work with the new paradigm of frame-based processing
will automatically transition to perform their library default behavior. The library default behavior
of the block might not produce the results you expected, thus causing undesired results in your
models. Once the frame bit is removed, you will no longer be able to upgrade your models using
the slupdate function. Therefore, you should upgrade your existing modes using slupdate as
soon as possible.

Logging Signals in Simulink

R2011b adds new capabilities to the DSP System Toolbox product for logging signals in Simulink.
When you log signals using the Dataset logging mode, you can now use DSP System Toolbox utility
functions to help you access that logged data in either a 2-D or 3-D format. For more information
about selecting a signal logging format, see Specifying the Signal Logging Data Format in the
Simulink documentation.

After you log a signal using the Dataset logging mode, you can choose to extract that logged signal
in either a 2-D or 3-D format. To fully support this new workflow, the following utility functions and
class have been added to the DSP System Toolbox product:

• dsp.util.getLogsArray — Formats and returns a 2-D or 3-D MATLAB array from a logged
signal in a Dataset object.

• dsp.util.getSignalPath — Returns all paths to signals with a specified name in the Dataset
object.

• dsp.util.SignalPath — Contains path information for signals in
Simulink.SimulationData.Dataset objects.

Triggered to Workspace

R2011b adds a new Save 2-D signals as parameter to the Triggered to Workspace block. This
parameter allows you to specify whether the block saves 2-D signals as 2-D arrays or as 3-D arrays.
To provide for backward compatibility, the Save 2-D signals as parameter also has an option
Inherit from input (this choice will be removed — see release notes). When you
select this option, the block saves sample-based data as a 3-D array and frame-based data as a 2-D
array.

20-3

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsw9nbq.html#bsxb84m

Compatibility Considerations
In a future release, the following option will be removed: Inherit from input (this choice
will be removed — see release notes). From this time forward, you must specify whether
the block saves 2-D signals as 2-D or 3-D arrays. The block will no longer make that choice based on
the status of the frame bit.

You can use the slupdate function to upgrade your existing models that contain a Triggered To
Workspace block. The function detects whether your models contain any Triggered To Workspace
blocks with the Save 2-D signals as parameter set to Inherit from input (this choice
will be removed — see release notes). If you do, the function detects the status of the frame
bit and sets the Save 2-D signals as parameter accordingly.

• If the input signal is frame based, the function sets the Save 2-D signals as parameter to 2-D
array (concatenate along first dimension).

• If the input signal is sample based, the function sets the Save 2-D signals as parameter to 3-D
array (concatenate along third dimension).

Digital Filter Design Block

R2011b adds a new Input processing parameter to the Digital Filter Design block. This parameter
allows you to choose whether you want the block to perform sample- or frame-based processing on
the input. You can set this parameter to either Elements as channels (sample based) or
Columns as channels (frame based). The third choice, Inherited (this choice will be
removed - see release notes), is a temporary selection. This additional option will help you as
you move control of frame-based processing from the signals to the blocks themselves.

Compatibility Considerations
When you load an existing model R2011b, all Digital Filter Design blocks in your model will have the
new Input processing parameter. By default, it will be set to Inherited (this choice will be
removed - see release notes). This setting enables your existing models to continue to work
as expected until you upgrade them. Although your old models will still work when you open and run
them in R2011b, you should upgrade them as soon as possible.

You can upgrade your existing models using the slupdate function. The function detects all blocks
that have Inherited (this choice will be removed - see release notes) selected for
the Input processing parameter. It then asks you whether you would like to upgrade each block. If
you select yes, the function detects the status of the frame bit on the input port of the block. If the
frame bit is 1 (frames), the function sets the Input processing parameter to Columns as
channels (frame based). If the bit is 0 (samples), the function sets the parameter to Elements
as channels (sample based).

In a future release, the frame bit and the Inherited (this choice will be removed - see
release notes) option will be removed. At that time, the Input processing parameter on blocks
in models that have not been upgraded will automatically be set to the block’s library default setting.
In the case of the Digital Filter Design block, the library default setting is Columns as channels
(frame based). If the library default setting does not match the parameter setting in your model,
your model will produce unexpected results.

Additionally, after the frame bit is removed, you will no longer be able to upgrade your models using
the slupdate function. Therefore, you should upgrade your existing modes using slupdate as soon
as possible.

R2011b

20-4

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/digitalfilterdesign.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/digitalfilterdesign.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

Filterbuilder, FDATool and the Filter Realization Wizard Block

R2011b adds new Input processing and Rate options parameters to filterbuilder, FDATool
and the Filter Realization Wizard block. For filterbuilder, these new parameters are available
when you click the Generate Model button on the Code Generation pane of the dialog box. For
FDATool and the Filter Realization Wizard block, the new parameters are available on the Realize
Model pane of the dialog box. When you use the Realize Model button to create a block, you can use
the Input processing parameter to specify whether the block will perform sample- or frame-based
processing on its input.

If you are creating a multirate filter block, the Rate options parameter will also be available. This
parameter allows you to specify whether the filter block you create will Enforce single-rate
processing or Allow multirate processing.

Changes to Row Vector Processing for dsp.Convolver, dsp.CrossCorrelator, and
dsp.Interpolator System Objects

In previous releases, the dsp.Convolver, dsp.CrossCorrelator, and dsp.Interpolator
System objects processed row vector inputs as a column vector. As of R2011b, these objects now
process row vector inputs as a row vector (multiple channels).

Compatibility Considerations
Starting in R2011b, you must update your code to transpose the row vector data to a column vector
before providing it as an input to the dsp.Convolver, dsp.CrossCorrelator, or
dsp.Interpolator System objects.

Custom System Objects
You can now create custom System objects in MATLAB. This capability allows you to define your own
System objects for time-based and data-driven algorithms, I/O, and visualizations. The System object
API provides a set of implementation and service methods that you incorporate into your code to
implement your algorithm. See Define New System Objects for more information.

New Allpole Filter Block
R2011b adds a new Allpole Filter block to the Filtering/Filter Implementations library. This block
provides direct form, direct form transposed, and Lattice AR allpole filter structures.

New Audio Weighting Filter Functionality
R2011b adds new audio weighting filter functionality to MATLAB and Simulink. In MATLAB, you can
now design audio weighting filters in the filterbuilder GUI or by using the preexisting
fdesign.audioweighting object. In Simulink, you can use the new Audio Weighting Filter block
from the Filtering/Filter Designs library.

Time Scope Enhancements
R2011b includes the following enhancements to the Time Scope:

20-5

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdatool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterrealizationwizard.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.convolverclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.crosscorrelatorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.interpolatorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.convolverclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.crosscorrelatorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.interpolatorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ug/bs4mxcb.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/allpolefilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.audioweighting.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/audioweightingfilter.html

• Improvements to default signal names in the scope legend — In previous releases, the
default names for signals displayed by the Time Scope block were Channel 1, Channel 2,
Channel 3, etc. In R2011b, the default naming convention has been improved to also identify the
source of the signal. For example, if the input to the Time Scope block is two separate two channel
signals named SignalA and SignalB, the default legend names would appear as:

SignalA:1, SignalA:2, SignalB:1, SignalB:2

See the Time Scope reference topic for more information.
• New scrolling display mode simplifies debugging process — R2011b adds a new option to

the Time Scope block and System object. This option allows you to specify how the scope displays
new data beyond the visible time span. In previous releases, the scope always displayed new data
up until it reached the maximum X-axis limit. When the data reached the maximum X-axis limit of
the scope window, the scope cleared the display and updated the time offset value. It then
displayed subsequent data points starting from the minimum X-axis limit. In the new scrolling
display mode, the scope scrolls old data to the left to make room for new data on the right side of
the scope display. This mode is graphically intensive and can affect run-time performance, but it is
beneficial for debugging and for monitoring time-varying signals.

To use the new scrolling display mode in the Time Scope block, set the Time span overrun mode
parameter to Scroll on the Visuals:TimeDomainOptions dialog box. To use the new scrolling
display mode in the dsp.TimeScope System object, set the TimeSpanOverrunMode property to
Scroll. By default, both the block and the System object display data using the previously
supported Wrap mode.

New Arbitrary Group Delay Design Support
This release adds a new fdesign.arbgrpdelay filter specification object. Arbitrary group delay
filters are allpass filters useful for correcting phase distortion introduced by other filters. Systems
with nonlinear phase responses result in nonconstant group delay, which causes dispersion of the
frequency components of the signal. This type of phase distortion can be undesirable even if the
magnitude distortion introduced by the filter produces the desired effect. In these cases, you can
compensate for the phase distortion by cascading the frequency-selective filter with an allpass filter
that compensates for the group delay.

Arbitrary Magnitude Responses Now Support Minimum Order and
Minimum/Maximum Phase Equiripple Design Options
R2011b adds new minimum order, minimum phase equiripple, and maximum phase equiripple design
options. These design options are now available on the Arbitrary Response design panel in
filterbuilder and through the fdesign.arbmag filter specification object.

Support for Constrained Band Equiripple Designs in MATLAB and
Simulink
R2011b adds support for constrained band equiripple designs to the following filter response types:

R2011b

20-6

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.arbgrpdelay.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.arbmag.html

fdesign Filter Specification
Object

filterbuilder Response
String

dspfdesign Library Block

fdesign.arbmag arbmag Arbitrary Response Filter
fdesign.bandpass bandpass Bandpass Filter
fdesign.bandstop bandstop Bandstop Filter
fdesign.differentiator diff Differentiator Filter

New Sinc Frequency Factor and Sinc Power Design Options for Inverse
Sinc Filters
R2011b adds two new design options for designing inverse sinc filters in MATLAB and Simulink. The
new design options allow you to control the sinc frequency factor and sinc power for inverse sinc
filters designed with fdesign.isinclp, the new fdesign.isinchp, the isinc filterbuilder
response type, or the Inverse Sinc Filter block in the dspfdesign library.

These new design options allow you to design inverse sinc lowpass filters with a passband magnitude
response equal to H(ω) = sinc(Cω)^(–P). C is the sinc frequency factor, and P is the sinc power.
Similarly, you can design inverse sinc highpass filters with a passband magnitude response equal to
H(ω) = sinc(C(1-ω))^(–P). For both the highpass and lowpass filters, the default values of C and P are
set to 0.5 and 1, respectively. For more information about the sinc frequency factor and sinc power
design options, see the corresponding reference topics.

New Inverse Sinc Highpass Filter Designs
This release adds support for designing highpass inverse sinc filters in MATLAB and Simulink. This
capability is available through a new fdesign.isinchp filter specification object as well as a new
isinchp filterbuilder response type.

Filterbuilder and dspfdesign Library Blocks Now Support Different
Numerator and Denominator Orders for IIR Filters
As of R2011b, you can now specify different numerator and denominator orders for IIR filters
designed using certain filter responses. This capability is available for the bandpass, bandstop,
highpass, and lowpass filter responses in the filterbuilder GUI and the corresponding
dspfdesign library blocks.

New Stopband Shape and Stopband Decay Design Options for
Equiripple Highpass Filter Designs
This release adds new stopband shape and stopband decay design options in MATLAB and Simulink.
These options are available through the fdesign.highpass filter specification object, the
highpass filterbuilder response type, and the Highpass Filter block in the dspfdesign library.

FFTW Library Support for Non-Power-of-Two Transform Length
The FFT, IFFT blocks, and the dsp.IFFT, dsp.FFT System objects include the use of the FFTW
library. The blocks and objects now support non-power-of-two transform lengths.

20-7

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.arbmag.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html#brygv7b-625
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/arbitraryresponsefilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.bandpass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html#brygv7b-627
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/bandpassfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.bandstop.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html#brygv7c-629
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/bandstopfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.differentiator.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html#brygv7c-632
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/differentiatorfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.isinclp.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.isinchp.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/inversesincfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.isinchp.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html#brygv7c-637
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.highpass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/highpassfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fft.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/ifft.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.ifftclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.fftclass.html

MATLAB Compiler Support for dsp.DigitalDownConverter and
dsp.DigitalUpConverter
R2011b adds MATLAB Compiler support for the dsp.DigitalDownConverter and
dsp.DigitalUpConverter System objects. With this capability, you can use the MATLAB Compiler
to take MATLAB files, which can include System objects, as input and generate standalone
applications.

Complex Input Support for dsp.DigitalDownConverter
The dsp.DigitalDownConverter System object now supports complex inputs.

getFilters Method of dsp.DigitalDownConverter and
dsp.DigitalUpConverter Now Return Actual Fixed-Point Settings
You can now access the actual fixed-point settings of the filter being used by the
dsp.DigitalDownConverter and dsp.DigitalUpConverter System objects. To do so, you must
first provide a fixed-point input to the object using the step method. Then, after the object is locked,
call the getFilters method to access the actual fixed-point properties of the filter being
implemented by the System object. Calling getFilters on an unlocked
dsp.DigitalDownConverter or dsp.DigitalUpConverter System object returns the same
results as previous releases.

dsp.SineWave and dsp.BiquadFilter Properties Not Tunable
The following dsp.SineWave properties are now nontunable:

• Frequency
• PhaseOffset

The following dsp.BiquadFilter properties are now nontunable:

• SOSMatrix
• ScaleValues

When objects are locked (i.e., after calling the step method), you cannot change any nontunable
property values.

Compatibility Considerations
Review any code that changes any dsp.SineWave or dsp.BiquadFilter property value after
calling the step method. You should update the code to use property values that do not change.

System Object DataType and CustomDataType Properties Changes
When you set a System object, fixed-point <xxx>DataType property to 'Custom', it activates a
dependent Custom<xxx>DataType property. If you set that dependent Custom<xxx>DataType
property before setting its <xxx>DataType property, a warning message displays. <xxx> differs for
each object.

R2011b

20-8

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitaldownconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitalupconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitaldownconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitaldownconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitalupconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitaldownconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitalupconverterclass.html

Compatibility Considerations
Previously, setting the dependent Custom<xxx>DataType property would automatically change its
<xxx>DataType property to 'Custom'. If you have code that sets the dependent property first,
avoid warnings by updating your code. Set the <xxx>DataType property to 'Custom' before setting
its Custom<xxx>DataType property.

Note If you have a Custom<xxx>DataType in your code, but do not explicitly update your code to
change <xxx>DataType to 'Custom', you may see different numerical output.

System Objects Variable-Size Input Dimensions
System objects that process variable-size input now also accept inputs where the number of input
dimensions change.

Conversion of Error and Warning Message Identifiers
R2011b changes some error and warning message identifiers in DSP System Toolbox software. For
System objects, both error and warning message identifiers have changed. On the Simulink side, the
Time Scope block has one warning message with a new identifier.

Compatibility Considerations
If you have scripts or functions that use message identifiers that changed, you must update the code
to use the new identifiers. Typically, message identifiers are used to turn off specific warning
messages. You can also use them in code that uses a try/catch statement and performs an action
based on a specific error identifier.

For example, for System objects, the MATLAB:system:System:inputSpecsChangedWarning
identifier has changed to MATLAB:system:inputSpecsChangedWarning. If your code checks for
MATLAB:system:System:inputSpecsChangedWarning, you must update it to check for
MATLAB:system:inputSpecsChangedWarning instead.

For the Time Scope block, the
Simulink:Engine:Simulink:Engine:UnableToUpdateDisplayInRapidAccelMode identifier
has changed to Simulink:Engine:UINotUpdatedDuringRapidAccelSim. If your code checks for
Simulink:Engine:Simulink:Engine:UnableToUpdateDisplayInRapidAccelMode, you must
update it to check for Simulink:Engine:UINotUpdatedDuringRapidAccelSim instead.

To determine the identifier for a warning, run the following command just after you see the warning:

[MSG,MSGID] = lastwarn;

This command saves the message identifier to the variable MSGID.

To determine the identifier for an error that appears at the MATLAB prompt, run the following
command just after you see the error:

exception = MException.last;
MSGID = exception.identifier;

20-9

Warning messages indicate a potential issue with your code. While you can turn off a warning, a
suggested alternative is to change your code so it runs without warnings.

New and Updated Demos
R2011b adds the following new demos:

• 3-Band Parametric Audio Equalizer Using UDP Packets and Code Generation —
Provides a three-band parametric equalizer algorithm based in MATLAB. The demo allows you to
dynamically adjust the coefficients of the filters and shows you how to use the MATLAB Coder
product to build a standalone executable file that you can run outside of MATLAB.

• Creating New Kinds of System Objects for File Input and Output — Provides an
example of creating custom System objects in MATLAB for file input and output.

Additionally, this release updates the IIR Filter Design Given a Prescribed Group Delay
demo to use the new fdesign.arbgrpdelay object.

Blocks Being Removed in a Future Release
The following blocks will be removed from the DSP System Toolbox product in a future release.

Block Being Removed (library) Replacement Block
Digital FIR Filter Design (dspddes3) Discrete FIR Filter
Remez FIR Filter Design (dspddes3) Discrete FIR Filter
Least Squares FIR Filter Design (dspddes3) Discrete FIR Filter
Digital FIR Raised Cosine Filter Design
(dspddes3)

Discrete FIR Filter

Digital IIR Filter Design (dspddes3) Discrete Filter
Yule-Walker IIR Filter Design (dspddes3) Discrete Filter
Integer Delay (dspobslib) Delay
Dyadic Analysis Filter Bank (dspobslib) Dyadic Analysis Filter Bank (dspmlti4)
Dyadic Synthesis Filter Bank (dspobslib) Dyadic Synthesis Filter Bank (dspmlti4)
Wavelet Analysis (dspobslib) DWT
Wavelet Synthesis (dspobslib) IDWT
Direct-Form II Transpose Filter (dsparch3) Digital Filter
Time-Varying Direct-Form II Transpose Filter
(dsparch3)

Digital Filter, Discrete FIR Filter, or Allpole Filter

Time-Varying Lattice Filter (dsparch3) Digital Filter, Discrete FIR Filter, or Allpole Filter

Compatibility Considerations
Beginning in R2011b, Simulink will generate a warning when you load a model that contains one or
more of the blocks listed in the preceding table. To ensure that your models continue to work as
expected when these blocks are removed from the product in a future release, it is strongly

R2011b

20-10

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.arbgrpdelay.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/delay.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dyadicanalysisfilterbank.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dyadicsynthesisfilterbank.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dwt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/idwt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/digitalfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/digitalfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/allpolefilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/digitalfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/allpolefilter.html

recommended that you replace these unsupported blocks as soon as possible. You can automatically
update the blocks in your model by using the slupdate function.

20-11

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

R2011a

Version: 8.0

New Features

Bug Fixes

Compatibility Considerations

21

Product Restructuring
The DSP System Toolbox product replaces the Signal Processing Blockset™ and Filter Design
Toolbox™ products in R2011a.

You can access archived documentation for the Signal Processing Blockset and Filter Design Toolbox
products on the MathWorks Web site.

Frame-Based Processing
In signal processing applications, you often need to process sequential samples of data at once as a
group, rather than one sample at a time. DSP System Toolbox documentation refers to the former as
frame-based processing and the latter as sample-based processing. A frame is a collection of samples
of data, sequential in time.

Historically, Simulink-family products that can perform frame-based processing propagate frame-
based signals throughout a model. The frame status is an attribute of the signals in a model, just as
data type and dimensions are attributes of a signal. The Simulink engine propagates the frame
attribute of a signal by means of a frame bit, which can either be on or off. When the frame bit is on,
Simulink interprets the signal as frame based and displays it as a double line, rather than the single
line sample-based signal.

General Product-Wide Changes

Beginning in R2010b, MathWorks started to significantly change the handling of frame-based
processing. In the future, frame status will no longer be a signal attribute. Instead, individual blocks
will control whether they treat inputs as frames of data or as samples of data. To learn how a
particular block handles its input, you can refer to the block reference page.

To make the transition to the new paradigm of frame-based processing, many blocks have received
new parameters. You can view an example of how to use these parameters to control sample- and
frame-based processing in R2011a and future releases. To open the model, type ex_inputprocessing
at the MATLAB command line. This model demonstrates how a block can process a signal as sample
based or frame based, depending on the setting of that block's Input processing parameter.

Notice that when the Discrete FIR Filter and Time Scope blocks are configured to perform frame-
based processing, they interpret columns as channels and treat the 2-by-2 input signal as two
independent channels. Conversely, when the blocks are configured to perform sample-based
processing, they interpret elements as channels and treat the 2-by-2 input signal as four independent
channels. For further information about sample- and frame-based processing, see Sample- and
Frame-Based Concepts.

The following sections provide more detailed information about the specific R2011a DSP System
Toolbox software changes that are helping to enable the transition to the new way of frame-based
processing:

• “Blocks with a New Input Processing Parameter” on page 21-3
• “Changes to the Overlap-Add FFT Filter, Overlap-Save FFT Filter, and Short-Time FFT Blocks” on

page 21-5
• “Difference Block Changes” on page 21-5
• “Signal To Workspace Block Changes” on page 21-6

R2011a

21-2

https://www.mathworks.com/help/doc-archives.html
matlab:ex_inputprocessing
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ug/bso3pkj.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ug/bso3pkj.html

• “Spectrum Scope Block Changes” on page 21-6
• “Sample-Based Row Vector Processing Changes” on page 21-6

Compatibility Considerations
During this transition to the new way of handling frame-based processing, both the old way (frame
status as an attribute of a signal) and the new way (each block controls whether to treat inputs as
samples or as frames) will coexist for a few releases. For now, the frame bit will still flow throughout
a model, and you will still see double signal lines in your existing models that perform frame-based
processing.

• Backward Compatibility — By default, when you load an existing model in R2011a any new
parameters related to the frame-based processing change will be set to their backward-compatible
option. For example, if any blocks in your existing models received a new Input processing
parameter this release, that parameter will be set to Inherited (this choice will be
removed - see release notes) when you load your model in R2011a. This setting enables
your existing models to continue working as expected until you upgrade them. Because the
inherited option will be removed in a future release, you should upgrade your existing models as
soon as possible.

• slupdate Function — To upgrade your existing models to the new way of handling frame-based
processing, you can use the slupdate function. Your model must be compilable in order to run
the slupdate function. The function detects all blocks in your model that are in need of updating,
and asks you whether you would like to upgrade each block. If you select yes, the slupdate
function updates your blocks accordingly.

• Timely Update to Avoid Unexpected Results — It is important to update your existing models
as soon as possible because the frame bit will be removed in a future release. At that time, any
blocks that have not yet been upgraded to work with the new paradigm of frame-based processing
will automatically transition to perform their library default behavior. The library default behavior
of the block might not produce the results you expected, thus causing undesired results in your
models. Once the frame bit is removed, you will no longer be able to upgrade your models using
the slupdate function. Therefore, you should upgrade your existing modes using slupdate as
soon as possible.

For more detailed information about the specific compatibility considerations related to the R2011a
frame-based processing changes, see the following Compatibility Considerations sections.

Blocks with a New Input Processing Parameter

Some DSP System Toolbox blocks are able to process both sample- and frame-based signals. After the
transition to the new way of handling frame-based processing, signals will no longer carry
information about their frame status. Blocks that can perform both sample- and frame-based
processing will require a new parameter that allows you to specify the appropriate processing
behavior. To prepare for this change, many blocks are receiving a new Input processing parameter.
You can set this parameter to Columns as channels (frame based) or Elements as
channels (sample based), depending upon the type of processing you want. The third choice,
Inherited (this choice will be removed - see release notes), is a temporary
selection. This additional option will help you to migrate your existing models from the old paradigm
of frame-based processing to the new paradigm.

For a list of blocks that received a new Input processing parameter in R2011a, expand the following
list.

21-3

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

Blocks with the New Input Processing Parameter

• Arbitrary Response Filter
• Bandpass Filter
• Bandstop Filter
• CIC Compensator
• CIC Filter
• Comb Filter
• Differentiator Filter
• Halfband Filter
• Highpass Filter
• Hilbert Filter
• Inverse Sinc Filter
• Lowpass Filter
• Nyquist Filter
• Octave Filter
• Parametric Equalizer
• Peak-Notch Filter
• Pulse Shaping Filter
• Unwrap

For a list of blocks that received an Input processing parameter in R2010b, see the R2010b Signal
Processing Blockset Release Notes.

Compatibility Considerations
When you load an existing model R2011a, any block with the new Input processing parameter will
show a setting of Inherited (this choice will be removed - see release notes). This
setting enables your existing models to continue to work as expected until you upgrade them.
Although your old models will still work when you open and run them in R2011a, you should upgrade
them as soon as possible.

You can upgrade your existing models, using the slupdate function. The function detects all blocks
that have Inherited (this choice will be removed - see release notes) selected for
the Input processing parameter, and asks you whether you would like to upgrade each block. If you
select yes, the function detects the status of the frame bit on the input port of the block. If the frame
bit is 1 (frames), the function sets the Input processing parameter to Columns as channels
(frame based). If the bit is 0 (samples), the function sets the parameter to Elements as
channels (sample based).

In a future release, the frame bit and the Inherited (this choice will be removed - see
release notes) option will be removed. At that time, the Input processing parameter in models
that have not been upgraded will automatically be set to either Columns as channels (frame
based) or Elements as channels (sample based), depending on the library default setting for
each block. If the library default setting does not match the parameter setting in your model, your
model will produce unexpected results. Additionally, after the frame bit is removed, you will no longer

R2011a

21-4

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/arbitraryresponsefilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/bandpassfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/bandstopfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/ciccompensator.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/cicfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/combfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/differentiatorfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/halfbandfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/highpassfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/hilbertfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/inversesincfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/lowpassfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/nyquistfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/octavefilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/parametricequalizer.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/peaknotchfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/pulseshapingfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/unwrap.html
https://www.mathworks.com/help/releases/R2010b/toolbox/dspblks/rn/bsmddmp-1.html#bsmjqat
https://www.mathworks.com/help/releases/R2010b/toolbox/dspblks/rn/bsmddmp-1.html#bsmjqat
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

be able to upgrade your models using the slupdate function. Therefore, you should upgrade your
existing modes using slupdate as soon as possible.

Changes to the Overlap-Add FFT Filter, Overlap-Save FFT Filter, and Short-Time FFT Blocks

R2011a updates the Overlap-Add FFT Filter, Overlap-Save FFT Filter, and Short-Time FFT blocks to
the use new way of frame-based processing. In previous releases, the frame status of the input signal
determined how these blocks processed the input. In R2011a, the default behavior of these blocks is
to always perform frame-based processing.

Unless you specify otherwise, these blocks now treat each column of the input signal as an individual
channel, regardless of its frame status. You can now enable the behavior change in these blocks while
still allowing for backward compatibility. This release adds a Treat Mx1 and unoriented sample-
based signals as parameter for this purpose. This parameter will be removed in a future release, at
which point the blocks will always perform frame-based processing.

Compatibility Considerations
The Treat Mx1 and unoriented sample-based signals as parameter will be removed in a future
release. From that point, the Overlap-Add FFT Filter, Overlap-Save FFT Filter, and Short-Time FFT
blocks will always perform frame-based processing.

You can use the slupdate function to upgrade your existing models that contain one of these blocks.
The function detects all Overlap-Add FFT Filter, Overlap-Save FFT Filter, and Short-Time FFT blocks
in your model. Then, if you allow it to, slupdate performs the following actions:

• If the input to the block is an M-by-1 or unoriented sample-based signal, the slupdate function:

• Places a Transpose block in front of the affected block in your model. This block transposes the
M-by-1 or unoriented sample-based input into a 1-by-M row vector. By converting the input to a
row vector, the block continues to produce the same results as in previous releases (an Mo-by-
Mi output).

• Sets the Treat Mx1 and unoriented sample-based signals as parameter to One channel.
This setting ensures that your model will continue to produce the same results when the Treat
Mx1 and unoriented sample-based signals as parameter is removed in a future release.

• If the input to the block is not an M-by-1 or unoriented sample-based signal, the slupdate
function sets the Treat Mx1 and unoriented sample-based signals as parameter to One
channel. This setting does not affect the behavior of your current model. However, the change
does ensure that your model will continue to produce the same results when the Treat Mx1 and
unoriented sample-based signals as parameter is removed in a future release.

Difference Block Changes

R2011a adds a new Running difference parameter to the Difference block.

Compatibility Considerations
In a future release, the following option for the Running difference parameter will be removed:
Inherit from input (this choice will be removed — see release notes). From this
time forward, you must specify whether or not the block computes a running difference; the block will
no longer make that choice based on the status of the frame bit.

21-5

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/overlapaddfftfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/overlapsavefftfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/shorttimefft.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/transpose.html

You can use the slupdate function to upgrade your existing models that contain a Difference block.
The function detects whether your models contain any Difference blocks with the Running
difference parameter set to Inherit from input (this choice will be removed — see
release notes). If you do, the function detects the status of the frame bit, and sets the Running
difference parameter accordingly.

Signal To Workspace Block Changes

R2011a updates the Signal To Workspace block. The block now allows you to choose an output format
using the Save format parameter. You can choose to save your data as an Array, Structure, or
Structure with time.

Additionally, the old Frames parameter has been replaced by a new Save 2-D signals as parameter.
This parameter allows you to specify whether the block saves 2-D signals as a 2-D array, or as a 3-D
array. To provide for backward compatibility, the Save 2-D signals as parameter also has an option
Inherit from input (this choice will be removed — see release notes). When you
select this option, the block saves sample-based data as a 3-D array and frame-based data as a 2-D
array.

Compatibility Considerations
In a future release, the following option will be removed: Inherit from input (this choice
will be removed — see release notes). From this time forward, you must specify whether
the block saves signals as a 2-D or 3-D array. The block will no longer make that choice based on the
status of the frame bit.

You can use the slupdate function to upgrade your existing models that contain a Signal To
Workspace block. The function detects whether your models contain any Signal To Workspace blocks
with the Save 2-D signals as parameter set to Inherit from input (this choice will be
removed — see release notes). If you do, the function detects the status of the frame bit and
sets the Save 2-D signals as parameter accordingly.

• If the input signal is frame based, the function sets the Save 2-D signals as parameter to 2-D
array (concatenate along first dimension).

• If the input signal is sample based, the function sets the Save 2-D signals as parameter to 3-D
array (concatenate along third dimension).

Spectrum Scope Block Changes

R2011a updates the Spectrum Scope block to use the new way of frame-based processing. To enable
this change, the block received a new Treat Mx1 and unoriented sample-based signals as
parameter. This new parameter is available only when you select the Buffer input check box. By
default, the new parameter is set to One channel. In this mode, the block treats M-by-1 and
unoriented sample-based input as a single column vector and buffers the input along that column.

Sample-Based Row Vector Processing Changes

In previous releases, some DSP System Toolbox blocks handled sample-based row vector inputs in a
special way. Of the blocks that can treat sample-based row vector inputs differently, there are two
categories:

• Some blocks have a Treat sample-based row input as a column check box which allows you to
explicitly specify how the block should treat sample-based row vector inputs. Expand the following
section for a full list of these blocks.

R2011a

21-6

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/spectrumscope.html

Blocks with a Check Box

• Maximum
• Mean
• Median
• Minimum
• Normalization
• RMS
• Standard Deviation
• Variance

• Other blocks automatically treat a sample-based row vector input as a single channel (column
vector). Expand the following section for a full list of these blocks.

Blocks That Implicitly Treat Sample-Based Row Vectors as a Single Channel

• Autocorrelation
• Autocorrelation LPC
• Burg AR Estimator
• Burg Method
• Complex Cepstrum
• Convolution
• Correlation
• Covariance AR Estimator
• Covariance Method
• DCT
• FFT
• IDCT
• IFFT
• Interpolation
• Levinson-Durbin
• LPC to LSF/LSP Conversion
• LPC to/from Cepstral Coefficients
• LPC to/from RC
• LPC/RC to Autocorrelation
• LSF/LSP to LPC Conversion
• Modified Covariance AR Estimator
• Modified Covariance Method
• Peak Finder
• Polynomial Stability Test
• Real Cepstrum
• Sort

21-7

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/maximum.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/mean.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/median.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/minimum.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/normalization.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/rms.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/standarddeviation.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/variance.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/autocorrelation.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/autocorrelationlpc.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/burgarestimator.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/burgmethod.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/complexcepstrum.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/convolution.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/correlation.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/covariancearestimator.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/covariancemethod.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dct.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fft.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/idct.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/ifft.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/interpolation.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/levinsondurbin.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/lpctolsflspconversion.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/lpctofromcepstralcoefficients.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/lpctofromrc.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/lpcrctoautocorrelation.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/lsflsptolpcconversion.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/modifiedcovariancearestimator.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/modifiedcovariancemethod.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/peakfinder.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/polynomialstabilitytest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/realcepstrum.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/sort.html

• Window Function
• Yule-Walker AR Estimator
• Yule-Walker Method

The special treatment of sample-based row vector inputs will be removed in a future release. See the
compatibility considerations for more information about how this change will affect your models.

Compatibility Considerations
The blocks listed will continue to work as expected in R2011a. However, in a future release these
blocks will produce a warning when you provide them with a sample-based row vector input, and
eventually, their behavior will change.

You can prepare your models for the upcoming change by running the slupdate function. If the
function detects any blocks that have a Treat sample-based row input as a column check box, it
performs the following actions:

• If the input to the block is a sample-based row vector, and the Treat sample-based row input as
a column check box is selected, the slupdate function places a Transpose block in front of the
affected block. The Transpose block transposes the sample-based row vector into a column vector,
which is then input into the affected block. Transposing the input signal ensures that your model
will produce the same results in future releases.

• If the Treat sample-based row input as a column check box is not selected, or if the input to
the block is not a sample-based row vector, the slupdate function takes no action. Your model
will continue to work as expected in future releases.

If the slupdate function detects any blocks that automatically treat sample-based row vectors as a
column, it performs the following actions:

• If the input to the block is a sample-based row vector, the slupdate function places a Transpose
block in front of the affected block. The Transpose block transposes the sample-based row vector
into a column vector, which is then input into the affected block. Transposing the input signal
ensures that your model will produce the same results in future releases.

• If the input to the block is not a sample-based row vector, the slupdate function takes no action.
Your model will continue to work as expected in future releases.

New Function for Changing the System Object Package Name from
signalblks to dsp
In R2010b, the package name of Signal Processing Blockset™ System objects changed from
signalblks to dsp. In R2011a, a new function is available to help you update your code. You can
use the sysobjupdate function to recursively search a folder and its subfolders for MATLAB files
that contain System object packages, classes, and properties that have been renamed.

Compatibility Considerations
If you have any existing System object code that uses a package name of signalblks, you should
use the sysobjupdate function to update your code. For more information, type help
sysobjupdate at the MATLAB command line.

R2011a

21-8

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/windowfunction.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/yulewalkerarestimator.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/yulewalkermethod.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/transpose.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/transpose.html

New Discrete FIR Filter Block
R2011a adds a new Discrete FIR Filter block to the DSP System Toolbox Filtering/Filter
Implementations library. The block is an implementation of the Simulink Discrete FIR Filter block.

New Printing Capability from the Time Scope Block
You can now print the data you see in the Time Scope block. To send the data to your printer, select
File > Print ... from the scope menu. To print the data to a MATLAB figure, select File > Print to
Figure.

Improved Display Updates for the Time Scope Block and System
Object
R2011a introduces the capability to improve the performance of the Time Scope block and
dsp.TimeScope System object by reducing the frequency with which the display updates. You can
now choose between this new enhanced performance mode and the old behavior by selecting Reduce
Updates to Improve Performance from the Simulation menu of the block, or the Playback menu
of the System object. By default, both the block and System object operate in the new enhanced
performance mode.

New Implementation Options Added to Blocks in the Filter Designs
Library
This release provides filter customization options for blocks in the Filtering/Filter Designs library. You
can access these options in the Filter implementation section of the block dialog box:

• Implement designed filters as Simulink basic elements or as a digital filter.
• Customize filters built using Simulink basic elements using the Optimizations parameters.

Blocks in the Filtering/Filter Designs library also support Input processing and Rate options
parameters in R2011a. For more information, see “Blocks with a New Input Processing Parameter”
on page 21-3.

Compatibility Considerations
• Frame-based processing and filters with algebraic loops — For filters that contain sample-by-

sample feedback, using a lumped-element implementation instead of Simulink basic elements can
eliminate algebraic loops. For supported blocks, use the slupdate function on older models with
designed filters to convert the designed filters into lumped filters. You can enable this feature
manually by clearing the Use basic elements for filter customization check box.

For filters with algebraic loops that do not have this option, specify sample-based processing by
setting the Input processing parameter to Elements as channels (sample based).

• Rate Options parameter — Filters that allow multirate processing, such as FIR decimators and
interpolators, perform single-rate processing by default. For more information, see the block
reference pages.

21-9

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/timescope.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.timescopeclass.html

New dsp.DigitalDownConverter and dsp.DigitalUpConverter System
Objects
This release adds new dsp.DigitalDownConverter and dsp.DigitalUpConverter System
objects. The digital up converter (DUC) and digital down converter (DDC) System objects provide
tools to design interpolation/decimation filters and simplify the steps required to implement the up/
down conversion process.

Improved Performance of FFT Implementation with FFTW library
The FFT, IFFT blocks include the use of the FFTW library.

Variable-Size Support for System Objects
The following System objects support inputs that change their size at runtime.

• dsp.ArrayVectorAdder
• dsp.ArrayVectorDivider
• dsp.ArrayVectorMultiplier
• dsp.ArrayVectorSubtractor
• dsp.FFT
• dsp.IFFT
• dsp.Maximum
• dsp.Mean
• dsp.Minimum
• dsp.Normalizer
• dsp.RMS
• dsp.StandardDeviation
• dsp.UDPReceiver
• dsp.UDPSender
• dsp.Variance

Compatibility Considerations
For the dsp.UDPSender and dsp.UDPReceiver System objects only, you should update your code
to stop sending or receiving any data length settings. Support for variable-size data makes the data
length settings redundant. For example,

% Change these lines to remove explicit lengths:
 step(hudps, dataSent, dataLength);
 [dataReceived len] = step(hudpr);
 bytesReceived = bytesReceived + ...
 length(dataReceived) len;

% Code lines with lengths removed:
 step(hudps,datasent);
 [dataReceived] = step(hudpr);

R2011a

21-10

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitaldownconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitalupconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fft.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/ifft.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.arrayvectoradderclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.arrayvectordividerclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.arrayvectormultiplierclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.arrayvectorsubtractorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.fftclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.ifftclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.maximumclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.meanclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.minimumclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.normalizerclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.rmsclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.standarddeviationclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.udpreceiverclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.udpsenderclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.varianceclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.udpsenderclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.udpreceiverclass.html

 bytesReceived = bytesReceived + ...
 length(dataReceived);

System Objects FullPrecisionOverride Property Added
A FullPrecisionOverride property has been added to the System objects listed below. This
property is a convenient way to control whether the object uses full precision to process fixed-point
input.

When you set this property to true, which is the default, it eliminates the need to set many fixed-
point properties individually. It also hides the display of these properties (such as RoundingMode,
OverflowAction, etc.) because they are no longer applicable individually.

To set individual fixed-point properties, you must first set FullPrecisionOverride to false.

Note The CoefficientDataType property is not controlled by FullPrecisionOverride

The following System objects are affected:

• dsp.ArrayVectorAdder
• dsp.ArrayVectorSubtractor
• dsp.Autocorrelator
• dsp.Convolver
• dsp.Crosscorrelator
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.SubbandAnalysisFilter
• dsp.SubbandSynthesisFilter
• dsp.Window

Compatibility Considerations
All of these System objects have their new FullPrecisionOverride property set to the default,
true. If you had set any fixed-point properties to non-default values for these objects, those values
are ignored. As a result, you may see different numerical answers from those answers in a previous
release. To use your nondefault fixed-point settings, you must first change
FullPrecisionOverride to false.

'Internal rule' System Object Property Value Changed to 'Full
precision'
To clarify the value of many DataType properties, the 'Internal rule' option has been changed
to 'Full precision'.

21-11

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.arrayvectoradderclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.arrayvectorsubtractorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.autocorrelatorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.convolverclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.crosscorrelatorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.firdecimatorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.firinterpolatorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.firrateconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.subbandanalysisfilterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.subbandsynthesisfilterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.windowclass.html

Compatibility Considerations
The objects allow you to enter either 'Internal rule' or 'Full precision'. If you enter
'Internal rule', that option is stored as 'Full precision'.

MATLAB Compiler Support for System Objects
The DSP System Toolbox supports the MATLAB Compiler for most System objects. With this
capability, you can use the MATLAB Compiler to take MATLAB files, which can include System
objects, as input and generate standalone applications.

The following System objects are not supported by the MATLAB Compiler software:

• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.DigitalDownConverter
• dsp.DigitalUpConverter
• dsp.TimeScope

Viewing System Objects in the MATLAB Variable Editor
The MATLAB Variable Editor now displays System objects properties in the same order as they
display at the command line. Note that the Variable Editor provides a read-only view for System
objects.

System Object Input and Property Warnings Changed to Errors
When a System object is locked (e.g., after the step method has been called), the following situations
now produce an error. This change prevents the loss of state information.

• Changing the input data type
• Changing the number of input dimensions
• Changing the input complexity from real to complex
• Changing the data type, dimension, or complexity of tunable property
• Changing the value of a nontunable property

Compatibility Considerations
Previously, the object issued a warning for these situations. The object then unlocked, reset its state
information, relocked, and continued processing. To update existing code so that it does not produce
an error, use the release method before changing any of the items listed above.

New and Updated Demos
R2011a adds the following new demos:

• Digital Up and Down Conversion for Family Radio Service — Shows you how to use
the new dsp.DigitalDownConverter and dsp.DigitalUpConverter System objects to
design a Family Radio Service (FRS) transmitter and receiver.

R2011a

21-12

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.cicdecimatorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.cicinterpolatorclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitaldownconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitalupconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.timescopeclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitaldownconverterclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitalupconverterclass.html

• Design and Analysis of a Digital Down Converter — Shows you how to use the
dsp.DigitalDownConverter System object to simplify the steps required to emulate the TI
Graychip 4016 digital down converter.

• Using System Objects with MATLAB Compiler — Shows you how to use MATLAB Compiler
to create a standalone application from MATLAB System objects.

Additionally, the Simulink-based demo, GSM Digital Down Converter, has been enhanced to use
the Fixed-Point Toolbox™ cordicrotate function. The demo now allows you to compare an NCO-
based mixer to a CORDIC-based mixer.

Documentation Examples Renamed
In previous releases, the example models used throughout the Signal Processing Blockset™
documentation were named with a prefix of doc_. In R2011a, this prefix has changed to ex_. For
example, in R2010b, you could launch an example model using the Time Scope block by typing
doc_timescope_tut at the MATLAB command line. To launch the same model in R2011a, you must
type ex_timescope_tut at the command line.

Compatibility Considerations
You can no longer launch DSP System Toolbox documentation example models using the doc_ name.
To open these models in R2011a, you must replace the doc_ prefix in the model name with ex_.

Downsample Block No Longer Has Frame-Based Processing Latency
for a Frame Size of One
As of R2011a, the Downsample block no longer exhibits frame-based processing latency when the
input frame size is one.

Compatibility Considerations
Existing models that use the Downsample block in frame-based processing mode may produce
different results in R2011a. Specifically, the Downsample block no longer has one-frame of latency
when the input frame size is one. If your model uses a Downsample block in frame-based processing
mode and the input frame size is one, you will see different results when you run your model in
R2011a. If you need to restore the one-frame latency, you can use a Delay block to delay the output of
the Downsample block by one frame.

SignalReader System Object Accepts Column Input Only
The SignalReader System object now accepts column inputs only.

Compatibility Considerations
Update any code with row input to the SignalReader object to convert the input to column form
before passing it to the object. (Note that this change occurred in R2010b.)

21-13

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.digitaldownconverterclass.html
matlab: ex_timescope_tut
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/downsample.html

FrameBasedProcessing Property Removed from the dsp.DelayLine and
dsp.Normalizer System Objects
In R2010b, the FrameBasedProcessing property was removed from the dsp.DelayLine and
dsp.Normalizer System objects. Both objects now treat each column of the input as a separate
channel (frame-based processing).

Compatibility Considerations
As of R2010b, MATLAB issues a warning when you set the FrameBasedProcessing property of the
dsp.DelayLine or dsp.Normalizer System objects.

R2010a MAT Files with System Objects Load Incorrectly
If you saved a System object to a MAT file in R2010a and load that file in R2011a, MATLAB may
display a warning that the constructor must preserve the class of the returned object. This occurs
because an aspect of the class definition changed for that object in R2011a. The object's saved
property settings may not restore correctly.

Compatibility Considerations
MAT files containing a System object saved in R2010a may not load correctly in R2011a. You should
recreate the object with the desired property values and save the MAT file.

R2011a

21-14

https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.delaylineclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.normalizerclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.delaylineclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/dsp.normalizerclass.html

	R2021a
	Multicore Tab for Dataflow: Analyze and configure multicore execution for Simulink models using Dataflow
	Rationally oversampled channelizers
	In-Place Memory Optimization: Optimize the memory usage in the generated code for certain DSP System Toolbox features
	Fractional delay FIR filter design
	Power Meter: Measure power of voltage signal in MATLAB and Simulink
	SIMD Code Generation: Use Intel AVX2 to generate optimized code for certain DSP System Toolbox features
	Improved filter response visualization for certain DSP System Toolbox blocks
	Improved Speed Performance in Accelerator Mode for specific blocks in DSP System Toolbox
	Improved display for Array Plot block
	Variable-sized input support for timescope object
	One-Based index support for Peak Finder block
	Removal of the oversampling ratio functionality
	Digital down-converter (DDC) and digital up-converter (DUC) examples for FPGA (requires HDL Coder license for code generation)
	Objects being removed
	Certain System objects will be removed
	Certain System objects have been removed
	dsp.TimeScope will be removed

	Blocks being removed
	Certain blocks will be removed
	Blocks that have been removed

	R2020b
	New time scope object: Visualize signals in the time domain
	Scopes Tab
	Measurements Tab

	SIMD Code Generation: Use Intel AVX2 to generate optimized code for certain DSP System Toolbox features
	One-sided short-time Fourier transform in dsp.STFT and dsp.ISTFT objects
	In-place Memory Optimization: Optimize the memory usage in the generated code for certain DSP System Toolbox blocks
	Improved Speed Performance in Accelerator Mode for specific blocks in DSP System Toolbox
	Visualize logged Stateflow states in the Logic Analyzer
	HDL-optimized FIR Decimation block and System object: Downsample signals using a FIR decimation filter with a hardware-friendly interface and architecture (requires HDL Coder for code generation)
	Gigasample-per-second (GSPS) CIC Decimation and CORDIC Algorithm: Increase throughput of HDL-optimized CIC decimation and complex-to-magnitude-angle conversion by using frame-based input (requires HDL Coder for code generation)
	Dataflow domain analysis integrated with Performance Advisor
	MATLAB Compiler support for dsp.ArrayPlot
	Functionality being removed or changed
	dsp.TimeScope will be removed
	Spectrum Analyzer block defaults changed
	HDL Minimum Resource FFT and HDL Streaming FFT blocks have been removed
	Matrix Viewer and Waterfall blocks will be removed

	R2020a
	SIMD Code Generation: Use Intel AVX2 to generate optimized code for certain DSP System Toolbox blocks
	FIR Interpolation and FIR Decimation blocks
	LMS Filter block

	Automatically leverage SIMD for multicore dataflow simulations
	New Biquadratic SOS Filter Object
	Multirate processing in FIR Rate Conversion block
	Non-Maximally Decimated Channelizers
	Complex Support for Channelizer and Channel Synthesizer Prototype Coefficients
	Enhancements to designMultirateFIR function
	UDP Sender supports large message sizes
	Variable CIC Decimation Factor: Specify decimation factor as an input to the CIC Decimation HDL Optimized block (requires HDL Coder for code generation)
	Gigasample-per-second (GSPS) NCO: Generate frame-based output from HDL-optimized NCO for high speed applications (requires HDL Coder for code generation)
	Suggestions for optimal model settings in Dataflow Simulation Assistant
	Dataflow subsystems supported in model reference simulation targets
	Functionality being removed or changed
	Removal of DirectFeedthrough property in dsp.VariableIntegerDelay System object
	dsp.AudioPlayer and dsp.AudioRecorder objects removed
	HDL-optimized NCO requires valid input port
	HDL-optimized NCO with floating-point inputs applies phase quantization
	NCO HDL Optimized block now ignores LUTRegisterResetType parameter
	Signal data no longer streams to the Logic Analyzer when signal logging is disabled

	R2019b
	SIMD code from Discrete FIR Filter Block: Generate optimized code using Intel AVX2 for FIR Filters in Simulink
	HDL-optimized CIC Decimation block and System object: Downsample signals using a cascade integrator-comb (CIC) filter (requires HDL Coder for code generation)
	Discrete FIR Filter HDL Optimized block: Filter using complex coefficient values (requires HDL Coder for code generation)
	Improved display for dsp.DynamicFilterVisualizer
	Improved display for dsp.ArrayPlot
	dsp.MatrixViewer support for multiple cursor measurements
	Playback control behavior changed for scopes in referenced models
	Output of colored noise generator can be bounded
	Blocks with finite states supported for unfolding in Dataflow subsystems
	Simulate Dataflow subsystems using multiple threads in Rapid Accelerator mode
	Virtual bus support at Dataflow subsystem boundaries for heterogeneous signals
	Functionality being removed or changed
	Certain System objects will be removed

	R2019a
	Direct and Inverse Short-Time Fourier Transform: Analyze and process streaming signals in the frequency domain and synthesize them with perfect reconstruction using overlap and add
	Fourth-Order Section Filter: Model and simulate cascaded fourth-order section IIR filters in MATLAB
	Spectrum Analyzer improvements for exponential averaging, mixed-complexity inputs, and MATLAB script generation
	Smooth data with exponential averaging
	Display block inputs with different complexity
	Generate MATLAB script from dsp.SpectrumAnalyzer

	Exponential Spectrum Averaging: Smooth spectrum estimation and analysis efficiently over time using exponential averaging
	Complex Data over UDP: Send and receive complex data directly over UDP in MATLAB and Simulink
	Stream signals only from a defined interval within audio files when using the From Multimedia File block
	New targets supported for multicore code generation from a dataflow subsystem
	Blocks with constant sample times supported in dataflow subsystems
	Improve simulation performance of dataflow subsystems using the Dataflow Simulation Assistant
	Identify scopes unsupported for multithreading in dataflow subsystems at edit-time
	Use the Timing Legend to highlight blocks in a dataflow domain
	Discrete FIR Filter HDL Optimized block: Use programmable coefficients with a fully parallel systolic architecture (requires HDL Coder for code generation)
	Discrete FIR Filter HDL Optimized block: Optimize symmetric and antisymmetric coefficients and optional reset port for a partly serial systolic architecture (requires HDL Coder for code generation)
	HDL code generation support for programmable coefficients with frame-based Discrete FIR Filter block (requires HDL Coder for code generation)
	dsp.MatrixViewer System object
	DSP System Toolbox Support Packages for ARM Cortex -A and ARM Cortex -M Processors will be removed
	Functionality being removed or changed
	Certain System objects will be removed
	Parametric EQ Filter block has been removed
	Changes to Discrete FIR Filter HDL Optimized serial filter parameters

	R2018b
	Dataflow: Accelerate your model using multi-threading and derive frame sizes automatically for multirate signal processing in Simulink
	Programmatic Interface for Spectrum Analyzer Measurements: Configure measurements programmatically and obtain numerical results for further processing or analysis
	Dynamic Filter Visualization: Visualize the magnitude response of time-varying digital filters
	Optimized Multistage Multirate Filters: Design multistage decimation and interpolation FIR filters based on requirements for response and implementation cost
	Sample Range for Audio File Reader: Stream signals only from a defined interval within audio files when using the dsp.AudioFileReader System object
	Faster Channelizer and Channel Synthesizer: Simulate polyphase FFT filters faster by leveraging additional parallel optimizations
	Peek Functionality in dsp.AsyncBuffer System object
	dsp.AudioFileReader System object supports http streams
	Improved Logic Analyzer performance for multichannel signals
	HDL code generation support for complex input signals or complex coefficients of frame-based Discrete FIR Filter and FIR Decimation blocks (requires HDL Coder for code generation)
	Discrete FIR Filter HDL Optimized: Select transposed architecture, optimize symmetric and antisymmetric coefficients, and enable reset port (requires HDL Coder for code generation)
	Functionality being removed or changed
	Vector Scope block has been removed
	Certain linear prediction System objects will be removed
	Cell array support removed for dsp.AllpassFilter coefficients

	R2018a
	Frequency Input Mode for Spectrum Analyzer: Display, measure, and analyze frequency-domain signals in MATLAB and Simulink
	Efficiency-Optimized Digital Filters: Simulate select digital filters faster in MATLAB and Simulink by leveraging additional parallel optimizations
	Complex Bandpass Decimation: Extract a frequency subband using a one-sided (complex) bandpass decimator in MATLAB and Simulink
	Frequency-Domain Adaptive Filter Block: Simulate adaptive FIR filters requiring a large number of taps
	Bit-Natural HDL-Optimized FFT: Return data in bit-natural order from frame-based FFT/IFFT (Requires an HDL Coder license for code generation)​​
	New partitioned modes in dsp.FrequencyDomainAdaptiveFilter System object
	Obtain section and output word lengths and fraction lengths for dsp.CICDecimator and dsp.CICInterpolator System objects
	Updated info method for dsp.CICDecimator and dsp.CICInterpolator System objects
	Specify coefficients directly in FIR halfband interpolator and decimator
	Frequency-Domain FIR Filter: Specify numerator in frequency domain
	Frequency-Domain FIR Filter: Specify coefficients from input port in Simulink
	Tunable Parameters Through Input Ports: Set values of tunable parameters using input signals for 14 additional Simulink blocks
	Logic Analyzer enhancements
	Additional pipelining of HDL-optimized Complex to Magnitude-Angle
	HDL Channelizer returns data in bit-natural order for both output sizes
	Variable-size signal support for dsp.VariableIntegerDelay System object
	Code generation support for getRateChangeFactors function
	Binary File Reader: Binary file no longer required to exist before code generation
	Log data from Time Scope block as timetable
	Discrete FIR Filter block supports custom state attributes for better customization and efficiency of generated code
	Functionality Being Removed
	Removal of Vector Scope block
	Removal of DirectFeedthrough property in dsp.VariableFractionalDelay System object
	Removal of DirectFeedthrough property in dsp.VariableIntegerDelay System object
	Constraints on the dimensions of InitialConditions in dsp.VariableIntegerDelay System object
	Functionality Removed from dsp.DigitalUpConverter and dsp.DigitalDownConverter System objects
	Functionality Removed from dsp.Delay System object
	Removal of 'linphase' option in firlpnorm

	R2017b
	Improved Spectrum Analyzer: Analyze signals in the frequency domain using polyphase FFT filter banks, custom windows, dBFS units, and a spectral mask panel​
	Zoom FFT: Compute fast Fourier transform (FFT) of a frequency subband at high resolution​
	Frequency-Domain FIR Filter: Convolve long sequences while balancing latency and execution efficiency
	Multitap Fractional Delay: Delay signals by multiple sample period values concurrently using variable fractional delay​​
	Minimum Resource FFT/IFFT: Reduce resource usage with the Burst Radix 2 architecture of the HDL Optimized FFT (requires HDL Coder for code generation)​​​
	Logic Analyzer Improvements: Triggers and bus signal names
	Enhancements to the dsp.Channelizer System object
	Automatic Port Creation: Add inports to scope blocks when routing signals
	Improvements to interactive legend in scope blocks
	Array Plot Improvements: Support for scalar and variable-size inputs, axis scaling at the command line
	dsp.BlockLMSFilter System object supports code generation
	Functionality being removed
	Removal of Overlap-Add FFT Filter block and Overlap-Save FFT Filter block
	Removal of sample-based processing mode from the DSP System Toolbox System objects
	Removal of adaptfilt objects
	Removal of qfft and qformat functions
	Removal of HDL Minimum Resource FFT block
	Removal of Streaming Radix 2 architecture in HDL-optimized FFT blocks and System objects

	R2017a
	Improved Spectrum Analyzer: Analyze signals in the frequency domain using additional units, dual visualization, and mask compliance output
	Unified interface for dsp.LogicAnalyzer: Visualize, measure, and analyze signal transitions in MATLAB using the same interface as the Simulink Logic Analyzer​
	Channelizer and Channel Synthesizer Blocks: Analyze and synthesize narrow subbands of a broadband signal using a polyphase FFT filter bank in Simulink
	Asynchronous Buffering: Exchange signals at different rates and array sizes with the dsp.AsyncBuffer System object
	HDL Optimized Filters: Model and generate optimized hardware implementations for FIR filters and polyphase filter banks​ (requires HDL Coder for code generation)
	Discrete FIR Filter
	Polyphase Filter Bank
	Frame Input Support for FIR Decimation

	Remove outliers from streaming signals in MATLAB and Simulink using Hampel filter
	Spectral estimation using filter bank in Simulink
	Tunable UDP port number in generated code
	Filter signals using the dsp.FilterCascade System object
	Use delay and scalar gain in dsp.FilterCascade System object
	Cascade a dsp.FilterCascade System object
	Access the complete history of LMS filter weights in MATLAB
	Tab Completion: Complete parameter names and options in DSP System Toolbox System objects
	Filter Builder and fdesign support IIR halfband filter System objects
	Specify image file icons for MATLAB System block
	Change tunable System object properties before locking
	Support for Time Scope to For Each subsystems
	Copy scope to clipboard
	Interactive legend for scopes
	Stem plot option for Time Scope block
	Time Scope Block: Connect nonvirtual bus and array of buses signals
	Frame-based processing changes
	Input processing parameter set to Inherited
	InputProcessing property set to Inherited errors
	Rate options parameter set to Inherit from input
	Find the histogram over parameter set to Inherited
	Running difference parameter set to Inherit from input
	Save 2-D signals as parameter set to Inherit from input
	Treat Mx1 and unoriented sample-based signals as parameter removed
	Sample-based processing parameter removed

	Functionality being removed
	Running Mode in Statistics Objects and Blocks
	Audio device recorder and player objects
	Radix 2 architecture of HDL-optimized FFT blocks and System objects

	R2016b
	Logic Analyzer: Visualize, measure, and analyze transitions and states over time for Simulink signals
	Spectral Mask: Compare a signal spectrum to a spectral mask using Spectrum Analyzer​​
	Channelizer and Channel Synthesizer: Analyze and synthesize narrow subbands of a broadband signal using a polyphase FFT filter bank​​
	Moving Statistics: Measure descriptive statistics on streaming signals in MATLAB and Simulink
	Gigasample per Second (GSPS) Signal Processing: Increase the throughput of HDL code generated from Discrete FIR Filter and Integer Delay blocks using frame input
	Stream signals to and from binary files
	Compute LMS adaptive filter weights using LMS Update block
	Allpass Filter block
	Specify coefficients in Farrow Rate Converter block and System object
	Spectral estimation using filter banks
	High-throughput polyphase filter bank for HDL example
	Bit-reversed input order for HDL-optimized FFT
	HDL code generation for reset port on Discrete FIR Filter
	Compiler support for System object scopes
	Custom X-axis data in Array Plot
	Set legend strings and autoscaling programmatically in Time Scope
	Simpler way to call System objects
	System objects support for additional inputs, global variables, and enumeration data types
	Functionality being removed
	Removal of sample mode from the DSP System Toolbox System objects
	Digital Filter block and System object
	Removal of adaptfilt objects
	Cell array support removal for dsp.AllpassFilter coefficients
	Inherited option removed from the input processing parameter
	Frame status parameter removed from the Check Signal Attributes block
	qfft object errors
	dspstartup removed

	R2016a
	DSP Unfolding for Mac: Generate multithreaded MEX files from MATLAB functions on Mac OS X
	Faster FIR and Biquad Filters: Run faster simulations for system models that include FIR and biquad filters
	Fixed-Point Farrow Rate Converter: Design and simulate Farrow rate conversion filters using fixed-point data types
	Gigasample per Second (GSPS) Signal Processing: Increase throughput of HDL-optimized FFT and IFFT algorithms using frame input
	HDL Optimizations for Biquad Filter: Reduce critical path or area when generating HDL from a subsystem that includes a Biquad Filter block
	Differentiate a signal using the dsp.Differentiator System object and Differentiator block
	Play audio data using the audioDeviceWriter System object and Audio Device Writer block
	Specify coefficients in IIR Halfband Interpolator and IIR Halfband Decimator Blocks and System objects
	Customize the data limits of the Matrix Viewer block
	Code generation for wave digital filter structure in dsp.AllpassFilter System object
	Generate coefficients for multirate filters
	Select the color of the noise in dsp.ColoredNoise System object
	Full-precision setting for product data type of Biquad Filter
	Code generation for Subband Analysis and Subband Synthesis Filters
	Enhancements to Variable Fractional Delay
	Multiple inputs for Spectrum Analyzer
	Additional axes for Time Scope
	Set legend programmatically in Array Plot
	System object property display
	System object enhancements to MATLAB System block
	Enhanced System Object Development with MATLAB Editor
	Functionality being removed

	R2015b
	DSP Unfolding: Generate a multi-threaded MEX File from a MATLAB function
	HDL Optimizations for Discrete FIR Filter: Implement FIR filters in hardware at higher frequencies or using fewer resources
	Array Plot Block: Visualize array and vector data
	Additional Multirate Filters: Design Halfband, CIC compensation, and HDL-optimized FIR rate conversion filters
	Conversion Filter Blocks: Convert the rate of signals in Simulink models
	Implement FIR and IIR filters in Simulink, using the Lowpass Filter and Highpass Filter blocks
	Estimate power spectrum and power spectral density using the Spectrum Estimator block
	Automatic selection of filter coefficients for FIR Interpolation, FIR Decimation, and FIR Rate Conversion blocks
	Visualize the frequency response of the underlying filters in the DSP System Toolbox blocks
	Specify the window length and window overlap in Cross-Spectrum Estimator and Discrete Transfer Function Estimator blocks
	Select the color of the noise in Colored Noise block
	New functionality added to the dsp.SpectrumEstimator System object
	Generate C code from dsp.AllpassFilter and import the System object into Simulink using the MATLAB System block
	dsp.CICDecimator and dsp.CICInterpolator System objects support single and double data types
	Frame-based signal logging in structure formats in Time Scope block
	Scientific notation in Time Scope
	Performance improvements for FFT, IFFT and notch peak filters
	Floating-point support and optional valid port for HDL-optimized NCO
	HDL Code Generation from filterbuilder
	Simulink templates for ARM Cortex-A and ARM Cortex-M processors
	ROI processing removed
	Frame-based processing changes
	Inherited Option Removed from the Input Processing Parameter
	Sample-Based Row Vector Processing Changes
	Blocks Emit Sample-Based Signals Only

	Features removed, replaced and renamed
	Blocks removed and replaced
	Removal of adaptfilt objects
	Removal of mfilt objects
	System Object Propagation Mixin Methods Renamed

	R2015a
	Audio Latency Reduction: Significantly reduce latency for audio hardware I/O in MATLAB and Simulink
	Filter Design Enhancements: Design high-order IIR parametric EQ filter, variable bandwidth FIR and IIR filters, Digital Down-Converter and Digital Up-Converter blocks
	DSP Simulink Model Templates: Configure the Simulink environment for digital signal processing models
	Streaming Scope Improvements: Plot in stem mode, access log x-axis scaling, customize sample rate, and use infinite data support
	Library for HDL Supported DSP Blocks: Find all blocks that support HDL
	C Code Generation of DSP Algorithms for ARM Cortex-A and Cortex-M processors: Generate optimized and faster performing C code using Embedded Coder
	Performance Improvements
	Updated Time Scope block toolbar and menus
	Specify block filter characteristics through System objects
	Discrete Transfer Function Estimator block
	Specify filter coefficients as an input to the FIR Decimation block
	Enhanced code generation for CIC Decimation and CIC Interpolation filter blocks
	HDL support for ‘inherit via internal rule’ data type setting on FIR Decimation and Interpolation blocks
	Improvements for creating System objects
	Min/Max logging instrumentation for float-to-fixed-point conversion of DSP System objects
	Provide variable-size input to the Delay System object
	Estimate output coherence of Transfer Function Estimator System object
	Specify filter coefficients as an input to the FIR Decimator System object
	Bit growth to avoid overflow in HDL-optimized FFT and IFFT
	Fixed-point support for FIR Half-band Interpolator and FIR Half-band Decimator System objects
	Updated cost method for filter System objects
	Frame-based processing
	Input processing parameter set to Inherited
	Rate options parameter set to Inherit from input
	Treat Mx1 and unoriented sample-based signals as parameter set to M channels
	Save 2-D signals as parameter set to Inherit from input
	Find the histogram over parameter set to Inherited
	Sample-based processing parameter set to Pass through
	Running difference parameter set to Inherit from input

	Features removed, replaced, and duplicated
	Blocks replaced, removed, and available in additional libraries
	Removal of adaptfilt objects

	Functionality changed or being removed for blocks and System objects
	Removal of sample mode from the DSP System Toolbox System objects
	Option to specify filter coefficients from Digital Up Converter and Digital Down Converter System objects being removed
	Removal of OutputDataType and OverflowAction properties for CIC Compensation Interpolator and Decimator System objects

	R2014b
	Optimized C code generation for ARM Cortex-A Ne10 library from MATLAB and Simulink with DSP System Toolbox Support Package for ARM Cortex-A Processors
	System objects for DSP System Toolbox Support Package for ARM Cortex-M Processors
	Fixed-point support for Biquad Filter on DSP System Toolbox Support Package for ARM Cortex-M Processors
	Multirate filters: Sample and Farrow Rate Converter, CIC Compensation Interpolator/Decimator, and FIR Halfband Interpolator/Decimator System objects
	Tunable coefficients and variable-size input available on FIR Interpolator System object and block
	Variable-size input available on FIR Decimator System object and block
	Min/Max logging instrumentation for float-to-fixed-point conversion of commonly used DSP System objects, including Biquad Filter, FIR Filter, and FIR Rate Converter
	HDL-optimized FFT and IFFT System objects and HDL-optimized Complex to Magnitude-Angle System object and block
	Real input, bit-reversed output, reset input available on HDL-optimized FFT and IFFT
	Option to synthesize lookup table to ROM available on HDL-optimized FFT and IFFT blocks
	Reduced latency of HDL-optimized FFT and IFFT
	CIC algorithm and HDL code generation for DC Blocker
	dsp.FilterCascade System object
	Phase Extractor block and dsp.PhaseExtractor System object
	Overrun and underrun reporting on audio device blocks and System objects
	Unsigned input data type in dsp.CICDecimator and dsp.CICInterpolator System Objects
	Logic Analyzer support for vector, enumerated, and complex inputs
	System object support in Simulink For Each Subsystem
	Getting Started Tutorials
	Functionality being removed or replaced for blocks and System objects
	Persistence mode in Vector Scope
	Code generation for additional DSP System Toolbox System objects
	Tunable amplitude on dsp.SineWave

	R2014a
	Up to four-times faster FIR filter simulation in MATLAB System object and Simulink block
	Optimized C code generation for ARM Cortex–M processors from System objects with MATLAB Coder and Embedded Coder
	Notch/peak filter and parametric equalizer filter System objects in MATLAB
	Variable bandwidth FIR and IIR filter System objects in MATLAB
	Pink/Colored noise generation System object in MATLAB
	HDL optimized FFT and IFFT Simulink blocks
	Fixed-point data type support for FIR filter, in ARM Cortex-M support package
	Choice of wrapping or truncating input of FFT, IFFT, and Magnitude FFT in MATLAB and Simulink
	Variable-size input for biquad and LMS filters in MATLAB and Simulink
	More flexible control of dsp.LMSFilter System object fixed-point settings
	DC blocker System object and Simulink block
	dsp.DigitalDownConverter and dsp.DigitalUpConverter now support C code generation
	The isDone method of dsp.AudioFileReader honors PlayCount
	M4A replaced by MPEG4 in dsp.AudioFileWriter
	Spectrogram cursors and CCDF plots in the spectrum analyzer
	Changed dsp.SpectrumAnalyzer property names
	Conversion to/from allpass from/to wave digital filter
	Transfer function estimation in Simulink
	Updates to the Time Scope
	Changed dsp.TimeScope property names
	Time Scope automatically switches to block-based sample time
	dsp.LogicAnalyzer channel selection
	System object templates
	System objects infer number of inputs and outputs from stepImpl method
	System objects setupImpl method enhancement
	System objects infoImpl method allows variable inputs
	System objects base class renamed to matlab.System
	System objects Propagates mixin methods
	Code generation support for additional functions

	R2013b
	Support Package for ARM Cortex-M Processors
	Channel and distortion measurement, cursors, and spectrogram visualization using Spectrum Analyzer in MATLAB and Simulink
	Channel mapping for multichannel audio devices in MATLAB and Simulink
	Variable-size support for FIR and Allpole filters in MATLAB and Simulink
	Estimation of Power Spectrum, Cross Power Spectrum, and Transfer Function for streaming data in MATLAB
	Data logging and archiving using Time Scope in Simulink
	MIDI control interface support in MATLAB
	Integer support on the output port of the MIDI Controls block
	Kalman filter
	Adaptive filters using Lattice, Fast Transversal, Filtered-X LMS, and Frequency Domain algorithms in MATLAB
	Coupled allpass filter
	Functionality being removed or changed
	Migrate away from fdesign.pulseshaping

	Configuration dialog added to Logic Analyzer
	Complex trigger support in Time Scope
	Default color changes for Array Plot, Time Scope, and Spectrum Analyzer
	MATLAB System Block to include System objects in Simulink models
	Restrictions on modifying properties in System object Impl methods
	System objects matlab.system.System warnings
	Removing HDL Support for NCO Block

	R2013a
	Allpass Filter System object
	Adaptive filter System objects using RLS and Affine Projection Filter
	Logic Analyzer System object
	Audio System object support for tunability, variable frame size, variable number of channels, and writing MPEG-4 AAC
	Array Plot System object for displaying vectors or arrays in 2-D and Spectrum Analyzer block with enhanced controls and features such as peak finder
	Time Scope block with triggering and peak finder features
	Triggers Panel
	Peak Finder Features
	Panning Capability
	Programmatic Access
	Scale Axes Limits After 10 Updates

	Change of the default for audio hardware API on Linux
	Change of the default for audio file formats in multimedia blocks and audio file reader and writer System objects
	Change of property default in the audio file reader System object
	Removal of the signalblks package
	Scope Snapshot display of additional scopes in Simulink Report Generator
	Unoriented vector treated as column vector in the Biquad Filter
	NCO HDL Optimized block
	HDLNCO System object
	HDL code generation for NCO HDL Optimized block and System object
	Support for nonpersistent System objects
	New method for action when System object input size changes
	Scaled double data type support for System objects

	R2012b
	SpectrumAnalyzer System object
	Cross-platform support for reading and writing WAV, FLAC, OGG, MP3 (read only), MP4 (read only), and M4a (read only)
	Support for code generation for CICDecimator and CICInterpolator System objects
	Support for HDL code generation for multichannel Discrete FIR Filter block
	Time Scope enhancements, including new cursors, embedded simulation controls, and External and Rapid Accelerator modes
	Cursor measurements panel
	Additional embedded simulation controls
	Support for external mode and rapid accelerator mode
	Properties dialog box
	Axes Maximization
	Automatic calculation of Time Span
	ReduceUpdates property
	Support for conditional subsystems

	Source and sink blocks being replaced
	Discrete IIRFilter and AllpoleFilter System objects
	Support for MATLAB Compiler for CICDecimator and CICInterpolator System objects
	Code generation support for SignalSource System object
	Behavior change of locked System objects for loading, saving, and cloning
	Behavior change of statistics blocks for variable-size inputs
	Simulation state save and restore for additional blocks
	For Each subsystem support for additional blocks
	Multi-instance model referencing support for additional blocks
	Expanded analysis support for filter System objects
	Removal of the signalblks package
	Discrete filter block visible in DSP library
	System object tunable parameter support in code generation
	save and load methods for System objects
	Save and restore SimState not supported for System objects
	Map integer delay to RAM on Delay block
	HDL support for System objects
	HDL resource sharing for Biquad Filter block

	R2012a
	Frame-Based Processing
	Inherited Option of the Input Processing Parameter Now Warns
	Logging Frame-Based Signals in Simulink
	Model Reference and Using slupdate
	Removing Mixed Frameness Support for Bus Signals on Unit Delay and Delay
	Audio Output Sampling Mode Added to the From Multimedia File Block

	System Object Enhancements
	Code Generation for System Objects
	New MAT-File Reader and Writer System Objects
	New System Object Option on File Menu
	Variable-Size Input Support for System Objects
	Data Type Support for System Objects
	New Property Attribute to Define States
	New Methods to Validate Properties and Get States from System Objects
	matlab.system.System changed to matlab.System

	Time Scope Enhancements
	Time Domain Measurements in Time Scope
	Multiple Display Support in Time Scope
	Style Dialog Box in Time Scope
	Sampled Data as Stairs in Time Scope
	Complex Data Support in Time Scope
	Additional Time Scope Enhancements

	ASIO Support in To/From Audio Device Blocks and Objects
	Video Processing Enabled for the DSP System Toolbox Multimedia File Blocks
	System Objects Integrated into Filter Design Workflow
	Integration of System Objects into Filter Design via fdesign, FDATool, and Filterbuilder
	Convert dfilt and mfilt Filter Objects to System Objects
	Filter Analysis and Conversion Methods for System Object Filters

	New Measurement Workflow
	Measurements for Bilevel Pulse Waveforms
	System Objects for Peak-to-RMS and Peak-to-Peak Measurements

	Discrete FIR Filter System Object
	Inverse Dirichlet Sinc-Shaped Passband Design Added to Constrained FIR Equiripple Filter
	Code Generation Support Added to FIR Decimator System Object
	Filter Block Enhancements
	IC/Coefficient Parameter Ports in the Simulink Discrete Filter and Discrete Transfer Function
	Reset Port for Resetting Filter State in Filter Blocks

	Discrete FIR Filter Block Coefficient Port Changes
	Statistics Blocks and Objects Warning for Region of Interest Processing
	New and Updated Demos

	R2011b
	Frame-Based Processing
	General Product-Wide Changes
	Logging Signals in Simulink
	Triggered to Workspace
	Digital Filter Design Block
	Filterbuilder, FDATool and the Filter Realization Wizard Block
	Changes to Row Vector Processing for dsp.Convolver, dsp.CrossCorrelator, and dsp.Interpolator System Objects

	Custom System Objects
	New Allpole Filter Block
	New Audio Weighting Filter Functionality
	Time Scope Enhancements
	New Arbitrary Group Delay Design Support
	Arbitrary Magnitude Responses Now Support Minimum Order and Minimum/Maximum Phase Equiripple Design Options
	Support for Constrained Band Equiripple Designs in MATLAB and Simulink
	New Sinc Frequency Factor and Sinc Power Design Options for Inverse Sinc Filters
	New Inverse Sinc Highpass Filter Designs
	Filterbuilder and dspfdesign Library Blocks Now Support Different Numerator and Denominator Orders for IIR Filters
	New Stopband Shape and Stopband Decay Design Options for Equiripple Highpass Filter Designs
	FFTW Library Support for Non-Power-of-Two Transform Length
	MATLAB Compiler Support for dsp.DigitalDownConverter and dsp.DigitalUpConverter
	Complex Input Support for dsp.DigitalDownConverter
	getFilters Method of dsp.DigitalDownConverter and dsp.DigitalUpConverter Now Return Actual Fixed-Point Settings
	dsp.SineWave and dsp.BiquadFilter Properties Not Tunable
	System Object DataType and CustomDataType Properties Changes
	System Objects Variable-Size Input Dimensions
	Conversion of Error and Warning Message Identifiers
	New and Updated Demos
	Blocks Being Removed in a Future Release

	R2011a
	Product Restructuring
	Frame-Based Processing
	General Product-Wide Changes
	Blocks with a New Input Processing Parameter
	Changes to the Overlap-Add FFT Filter, Overlap-Save FFT Filter, and Short-Time FFT Blocks
	Difference Block Changes
	Signal To Workspace Block Changes
	Spectrum Scope Block Changes
	Sample-Based Row Vector Processing Changes

	New Function for Changing the System Object Package Name from signalblks to dsp
	New Discrete FIR Filter Block
	New Printing Capability from the Time Scope Block
	Improved Display Updates for the Time Scope Block and System Object
	New Implementation Options Added to Blocks in the Filter Designs Library
	New dsp.DigitalDownConverter and dsp.DigitalUpConverter System Objects
	Improved Performance of FFT Implementation with FFTW library
	Variable-Size Support for System Objects
	System Objects FullPrecisionOverride Property Added
	'Internal rule' System Object Property Value Changed to 'Full precision'
	MATLAB Compiler Support for System Objects
	Viewing System Objects in the MATLAB Variable Editor
	System Object Input and Property Warnings Changed to Errors
	New and Updated Demos
	Documentation Examples Renamed
	Downsample Block No Longer Has Frame-Based Processing Latency for a Frame Size of One
	SignalReader System Object Accepts Column Input Only
	FrameBasedProcessing Property Removed from the dsp.DelayLine and dsp.Normalizer System Objects
	R2010a MAT Files with System Objects Load Incorrectly

